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Abstract 

The objective of this study was to compare the performances of splitting rules for predicting an ordinal response 

with simulation and a real data set. In the case of simulations, we compared across the methods using different 

sample sizes and the number of independent variables by employing the Monte Carlo simulation method. In the 

real data application, an analysis was performed with 265 cases. The results showed that the performances of the 

generalized Gini with the linear and quadratic costs of misclassification were better suited for analysis based on 

the gamma ordinal association measure and misclassification error rate than the other approaches. According to 

the gamma ordinal association measure, the generalized Gini (linear and quadratic) to the major risk factors 

determined for albuminuria in type 2 diabetes mellitus patients showed a slightly better performance than the 

other approaches. The predictive capability of splitting rules based on generalized Gini for predicting an ordinal 

response can be used for different sample sizes, number of independent variables and potential future suitable 

classification data problems. Consequently, our study will move towards choosing the generalized Gini (linear 

or quadratic) as the splitting rule and evaluate the data by using the Classification Trees (CT) in future studies, 

focusing on predicting an ordinal response. 
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1. Introduction 

The dependent variable is called an ordinal because it indicates an ordering of responses. Specific methods such 

as Classification Trees (CT) are used to analyze the ordinal response variable with only a few possible values. 

Tree-based methods are the most flexible and powerful data analysis tools available to explore complex data 

structures [1]. As the CT is inherently non-parametric no assumptions are made with respect to the underlying 

distribution of the values of the predictor variables. Thus, the CT can handle numerical data that are highly 

skewed or multi-modal, as well as categorical predictors with either an ordinal or non-ordinal structure [2]. The 

CT is a popular class prediction method for medical data classification. This analysis tool is especially useful for 

modelling diseases that have multiple contributing factors for predicting the possible effective risk factors in 

patients. 

The CT measures the impurity of a split at a node by defining an impurity measure or splitting rule. Generally, 

the Gini index and classification error are used to measure the degree of the impurity. The CT is built in 

accordance with the splitting rule that performs the splitting of the learning sample into smaller sections [3]. 

Four splitting rules (ordinal impurity, ordered twoing and generalized Gini with linear and quadratic costs of 

misclassification) are recommended when the response variable is an ordinal scale. These methods are used to 

identify an optimal CT for the ordinal response variable. The rpartOrdinal R package developed by [4] 

implements the ordinal splitting rule methods mentioned. 

In our study, we addressed the problem of the splitting rule for fitting a CT on condition that the response 

variable was an ordinal. The gamma ordinal association measure and misclassification error rate were used to 

select the best splitting rule both on simulation data and real data. 

2. Material and Methods 

𝒙𝒙𝒊𝒊  =  (𝑥𝑥𝑖𝑖1,𝑥𝑥𝑖𝑖2, … ,𝑥𝑥𝑖𝑖𝑖𝑖 ) is a p-dimensional vector of the independent variables. 𝑤𝑤 =  𝑤𝑤𝑗𝑗  represent the cases in 

class J which denotes the number of categories in the response variable [4]. 

2.1. Generalized Gini index 

To measure the node impurity when the response is nominal, the Gini index is        

𝑖𝑖(𝑡𝑡)  =  ∑ P(𝑤𝑤𝑘𝑘 |𝑡𝑡)P(𝑤𝑤𝑙𝑙|𝑡𝑡)𝑙𝑙≠𝑘𝑘         (1)

         

where k and l are categories of the response variable and P�𝑤𝑤𝑗𝑗 �𝑡𝑡� are the proportions of cases given the root 

node (t) for 𝑗𝑗 =  1, … 𝐽𝐽 [2].   

The equation for the Gini index can also be expressed as [5]. 

𝑖𝑖(𝑡𝑡)  =  ∑ P(𝑤𝑤𝑘𝑘|𝑡𝑡)[1 −  P(𝑤𝑤𝑘𝑘|𝑡𝑡)]𝑘𝑘  =  1 −  ∑ P2(𝑤𝑤𝑘𝑘 |𝑡𝑡)𝑘𝑘        (2)        
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When the response is an ordinal the Gini index is inadequate and does not make use of the advantage to measure 

the impurity of the node [4,6]. To measure node impurity for an ordinal response, the generalized Gini impurity 

function is  

𝑖𝑖𝐺𝐺𝐺𝐺 (𝑡𝑡)  =  ∑ 𝐶𝐶(𝑤𝑤𝑘𝑘 |𝑤𝑤𝑙𝑙)P(𝑤𝑤𝑘𝑘 |𝑡𝑡)P(𝑤𝑤𝑙𝑙|𝑡𝑡)𝑙𝑙≠𝑘𝑘        (3)   

         

𝐶𝐶(𝑤𝑤𝑘𝑘 |𝑤𝑤𝑙𝑙) is the cost of misclassifying a class l case as belonging to class k. The cost of misclassifying is equal 

to 1 for all 𝑙𝑙 ≠  𝑘𝑘 [2,4]. 

𝑠𝑠1  <  𝑠𝑠2  <  …  <  𝑠𝑠𝑗𝑗  denotes the scores which are assigned to the ordered categories of the response variable. 

By using these scores, the misclassification cost can be defined as the absolute differences between the pairs of 

scores. This transformation enables us to describe the linear and quadratic costs of the misclassification [7]. 

If  𝐶𝐶(𝑤𝑤𝑘𝑘|𝑤𝑤𝑙𝑙)  =  |𝑠𝑠𝑘𝑘  −  𝑠𝑠𝑙𝑙 | transformation is used, the generalized Gini impurity function with linear cost of 

misclassification is expressed as 

𝑖𝑖𝐺𝐺𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑡𝑡)  =  ∑ ∑ |𝑠𝑠𝑘𝑘  −  𝑠𝑠𝑙𝑙|P(𝑤𝑤𝑘𝑘 |𝑡𝑡)P(𝑤𝑤𝑙𝑙|𝑡𝑡)
𝐽𝐽
𝑙𝑙=1

𝐽𝐽
𝑘𝑘=1       (4)

         

If the 𝐶𝐶(𝑤𝑤𝑘𝑘|𝑤𝑤𝑙𝑙)  =  (𝑠𝑠𝑘𝑘  −  𝑠𝑠𝑙𝑙)2 transformation is used, the generalized Gini impurity function with the 

quadratic cost of misclassification is expressed as  

𝑖𝑖𝐺𝐺𝐺𝐺𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 (𝑡𝑡)  =  ∑ ∑ (𝑠𝑠𝑘𝑘  −  𝑠𝑠𝑙𝑙)2P(𝑤𝑤𝑘𝑘|𝑡𝑡)P(𝑤𝑤𝑙𝑙|𝑡𝑡)
𝐽𝐽
𝑙𝑙=1

𝐽𝐽
𝑘𝑘=1       (5)

         

2.2. Ordinal impurity 

Ordinal impurity is defined by 𝐹𝐹�𝑤𝑤𝑗𝑗 �𝑡𝑡�  =  ∑ P(𝑤𝑤𝑘𝑘 |𝑡𝑡)𝑗𝑗
𝑘𝑘=1 , where the cumulative distribution function of the 

response variable is taking the place of  P(𝑤𝑤𝑘𝑘|𝑡𝑡) in (1): 

𝑖𝑖𝑂𝑂𝑂𝑂(𝑡𝑡)  =  ∑ 𝐹𝐹�𝑤𝑤𝑗𝑗 �𝑡𝑡��1 −  𝐹𝐹(𝑤𝑤𝑗𝑗 |𝑡𝑡)�𝐽𝐽
𝑗𝑗=1         (6)

         

Ordinal impurity derives an ordinal response classification tree that does not require the assignment of the costs 

of misclassification [4,5]. 

2.3. Ordered twoing 

The twoing index splits the categories of the response variable into two superclasses (Cij ), and then finds the 

best split on the independent variable based on the two superclasses [8]. The ordered twoing which is used for 
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the ordinal response variables is a modification of the twoing index. In the ordered twoing index, only the 

adjoining categories can be grouped [9]. 

The superclasses Cij  isare defined as 

𝐶𝐶𝑖𝑖𝑖𝑖  =  � 1 
0
�  𝑤𝑤𝑖𝑖   =  1,…,𝑗𝑗
       𝑤𝑤𝑖𝑖  =  𝑗𝑗  + 1,…,𝐽𝐽          (7)

         

For the node t, split s and superclasses 𝐶𝐶𝑗𝑗 , the ordered twoing function is defined as 

Φ�𝑠𝑠, 𝑡𝑡,𝐶𝐶𝑗𝑗 �  =  2P𝐿𝐿P𝑅𝑅 �P�𝐶𝐶𝑗𝑗 �𝑡𝑡𝐿𝐿�  −  P�𝐶𝐶𝑗𝑗 �𝑡𝑡𝑅𝑅��
2
       (8)

         

where P𝐿𝐿  =  P(𝑡𝑡𝐿𝐿)  P(𝑡𝑡)⁄  is the proportion of cases in t sent to the left child node, and  P𝑅𝑅  =  P(𝑡𝑡𝑅𝑅)  P(𝑡𝑡)⁄  is 

the proportion sent to the right child node. The best split s is chosen to maximize the value of Φ�𝑠𝑠, 𝑡𝑡,𝐶𝐶𝑗𝑗 � based 

on the independent variables [2,4]. 

2.4. Description of the simulation methods 

Our objective in this study was to compare the gamma statistics and error rates from the ordinal impurity, 

ordered twoing and generalized Gini with linear and quadratic costs of misclassification. We conducted 

simulation studies based on p = 8, 12, 16 and 20 independent variables. The independent variables were 

generated from the multivariate normal distribution related to each other. Generating the multivariate data 

involved both the low and high correlations between the independent variables. The ordinal dependent variable 

with three categories was generated based on the function of the independent variables. 

We compared across the methods using different sample sizes (n = 250, 500, 750, 1000) using the Monte Carlo 

simulation method. We did 1000 replications for each model using the methods employed by R 2.9.0. The data 

was then analyzed using the rpartOrdinal package [4]. The ten-fold cross validation was used to determine the 

best splitting rule in predicting an ordinal response. Briefly, this process involves splitting up the dataset into 10 

random segments and using 9 of them for the training set and the 10th one as a test set for the algorithm. 

The gamma statistics and misclassification error rates were obtained from each method for 1000 replications and 

the mean of the gamma statistics and misclassification error rates were recorded for each sample size. 

2.5. Albuminuria data 

Urinary albumin loss can be categorized into three classes based on the quantity of albumin lost. 

Nonalbuminuria is defined as a urinary albumin loss of 0 - 30 mg/24 hours, microalbuminuria as 30-300 mg/24 

hours and macroalbuminuria as ≥ 300 mg/24 hours [10].  Diabetic nephropathy develops in 20 - 40% of diabetic 

individuals [11]. Microalbuminuria, a reversible phase of diabetic nephropathy, is an important finding 
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characterized by 30 - 299 mg/L excretion of albumin in 24-hour urine [12]. Microalbuminuria is the primary 

predictor for the development of diabetic nephropathy in patients with type 2 diabetes [11,13]. We analyzed the 

albuminuria data in type 2 diabetes mellitus from authors in [14]. Overall there were 9 predictors and 265 cases 

(data from 187 nonalbuminuria, 57 microalbuminuria and 21 macroalbuminuria patients) in the data. In all the 

cases, weight (kg), blood urea (mg/dl), serum albumin (mg/dl), age (year), creatinine clearance (CrCl) 

(mL/min), fasting plasma glucose (mg/dl), post-prandial plasma glucose (mg/dl), HbA1c (mg/dl) and urine 

creatinine (mg/dl) were assessed and documented. We drew k = 10 cross validation sets from the albuminuria 

data. 

The gamma statistics and misclassification error rates were obtained from each method for a ten-fold cross 

validation and the mean of the gamma statistics and misclassification error rates were recorded for each of the 

CT algorithms. 

3. Results 

3.1. Simulations  

We simulated the data generated by running for each of the four splitting rules in order to fit a classification tree 

to predict an ordinal response. The values averaged for the 1000 simulations were reported in Figs. 1-8 using 

varying sample sizes and number of independent variables. In the simulation results, the gamma statistics were 

between 0.1975 - 0.9547 for n = 250, 0.4767 - 0.9720 for n = 500, 0.525 - 0.974 for n = 750 and 0.653 - 0.948 

for n = 1000. The misclassification error rates ranged between 0.236 - 0.584 for n = 250, 0.176 - 0.506 for n = 

500, 0.173 - 0.493 for n = 750 and 0.238 - 0.444 for n = 1000. 

 

Fig. 1. gamma statistics obtained from 1000 Monte Carlo simulation for p=8 according to four splitting rules 

and sample size 
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As evident from the Figures, the generalized Gini with the linear and quadratic costs of misclassification had the 

biggest gamma statistics of all the sample sizes and the number of independent variables. As the sample size 

increased, the gamma statistics gradually increased, depending upon the number of independent variables. 

Similarly, the generalized Gini (linear and quadratic) was found on the smallest misclassification error rate for 

all of the conditions. While the sample size increased, the misclassification error rate gradually decreased, 

depending upon the number of independent variables.  

 
Fig. 2. misclassification error rate obtained from 1000 Monte Carlo simulation for p=8 according to four 

splitting rules and sample sizes 

 
Fig. 3. gamma statistics obtained from 1000 Monte Carlo simulation for p=12 according to four splitting rules 

and sample sizes 
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Fig. 4. misclassification error rate obtained from 1000 Monte Carlo simulation for p=12 according to four 

splitting rules and sample sizes 

 

Fig. 5. gamma statistics obtained from 1000 Monte Carlo simulation for p=16 according to four splitting rules 

and sample sizes 
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Fig. 6. misclassification error rate obtained from 1000 Monte Carlo simulation for p=16 according to four 

splitting rules and sample sizes 

 

Fig. 7. gamma statistics obtained from 1000 Monte Carlo simulation for p=20 according to four splitting rules 

and sample sizes 
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Fig. 8. misclassification error rate obtained from 1000 Monte Carlo simulation for p=20 according to four 

splitting rules and sample sizes 

Performances of ordinal impurity and ordered twoing were almost similar for the four sample sizes. As a result 

the simulations showed that the generalized Gini with linear and quadratic costs of misclassification had a 

slightly better predictive performance for all the four sample sizes. 

3.2. Evaluation conducted on albuminuria data 

We proposed to discover the risk factors in the management of the albuminuria, based on the cross validation 

method. We used the gamma statistics and misclassification error rate for the ten-fold cross validation to 

monitor the prediction performance of the methods. In our study, we reported a research where several splitting 

rules  were used for predicting the nonalbuminuria, microalbuminuria and macroalbuminuria groups based on 

the weight, blood urea, serum albumin, age, CrCl, fasting plasma glucose, post-prandial plasma glucose, HbA1c 

and urine creatinine variables. 

The values averaged over the ten-fold cross validation were reported in Table 1 and Figs. 9-10 under four 

splitting rules. As evident, the mean of the gamma statistics ranged between 0.3060 and 0.6796. The mean of the 

misclassification error rates hovered between 0.2989 and 0.3849. The maximum gamma statistics value in 

determining the effect of the risk factors in albuminuria in type 2 diabetes mellitus patients was 0.6796 for the 

generalized Gini (quadratic) while the minimum misclassification error rate value was 0.2989 for the 

generalized Gini (linear) (Table 1). 

 

n=250 500 750 1000
0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0,55

M
is

cl
as

si
fic

at
io

n 
Er

ro
r R

at
e

p=20

 Ordinal impurity
 Ordered twoing
 Generalized Gini (linear)
 Generalized Gini (quadratic)

118 
 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2014) Volume 17, No  1, pp 110-123 
 

Table 1. Gamma statistics and misclassification error rates obtained from ten-fold cross validation of four 

splitting rules for albuminuria data 

Fold 

Gamma Statistics 

Ordinal Impurity Ordered Twoing 

Generalized Gini 

(Linear) 

Generalized Gini 

(Quadratic) 

1 0.7857 0.5152 0.8519 0.9231 

2 0.5029 0.3613 0.7935 0.8163 

3 0.1849 0.0661 0.4884 0.5929 

4 0.3021 0.1414 0.5782 0.5880 

5 0.5069 0.3549 0.7205 0.7149 

6 0.4938 0.3532 0.6599 0.6542 

7 0.5133 0.3345 0.6646 0.6592 

8 0.5000 0.3375 0.6346 0.6449 

9 0.4531 0.3001 0.5998 0.5942 

10 0.4262 0.2953 0.6002 0.6083 

Mean±sd 0.4669±0.1553 0.3060±0.1238 0.6591±0.1066 0.6796±0.1104 

 

Fold 

Misclassification Error Rate 

Ordinal Impurity Ordered Twoing 

Generalized Gini 

(Linear) 

Generalized Gini 

(Quadratic) 

1 0.1538 0.3462 0.1154 0.0769 

2 0.3462 0.3077 0.1923 0.2308 

3 0.5385 0.5385 0.4615 0.4231 

4 0.3846 0.4231 0.3077 0.3462 

5 0.3462 0.4231 0.3077 0.3846 

6 0.2692 0.2692 0.3462 0.3462 

7 0.2692 0.3846 0.2692 0.2692 

8 0.3077 0.2692 0.3077 0.2692 

9 0.4615 0.5000 0.4231 0.4615 

10 0.3871 0.3871 0.2581 0.2258 

Mean±sd 0.3464±0.1074 0.3849±0.0907 0.2989±0.1011 0.3033±0.1128 

        sd: standard deviation 

Findings were similar for each of the simulations and the real data set. As evident from the Figures, the 

generalized Gini with the linear and quadratic costs of misclassification took on the biggest gamma statistics 

(Fig. 9). Similarly, the generalized Gini (linear and quadratic) were found on the smallest misclassification error 

rate (Fig. 10).  
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Fig. 9. gamma statistics of four splitting rules for albuminuria data 
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Fig. 10. misclassification error rates of four splitting rules for albuminuria data 
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4. Conclusion  

We tried to compare across the methods with varying sample sizes and number of independent variables by 

using the Monte Carlo simulation method, as well as discover the risk factors and make decision rules for the 

management of albuminuria in type 2 diabetes mellitus patients. For this purpose, we evaluated the performance 

of the methods by using the gamma statistics and the misclassification error rate. 

The CT uses recursive partitioning to assess the effect of specific variables on the response variable, thereby 

ultimately generating groups of patients with similar clinical features. The categorizing of patients into groups 

with differing characteristics using clinical variables generates a tree-structured model that can be analyzed to 

assess its clinical utility. Therefore, the CT is more suitable than the classical statistical methods. Additionally, 

this method probably has the potential to complement the existing statistical models and contribute to the 

interpretation and presentation of risk in computerized decision support systems.  

A few works have been published earlier classifying the ordinal response using the CT. The authors in [15] 

developed a simple approach, the C4.5-ORD method, showing how standard classification algorithms are 

applied to the ordinal response. In the process of the classification, which comprises two stages, viz., the 

training process and testing process, the ordinal dataset with J classes is converted to the J-1 binary dataset. By 

using the probabilities of the J original ordinal classes, the class which has the highest probability is estimated. 

They used 29 data sets to compare the results with different methods and demonstrated that the accuracy of the 

decision trees can be improved by employing the C4.5-ORD method. The author in [16] established a decision 

tree model, considered a binary tree, by modifying the impurity measure with n-wise and top-k measures. In the 

study, the top-k enables building the tree based on the top choices of the response variable, and n-wise assumes 

that each of the ordered categories of the response variable are a discrete choice; therefore, it configures the 

orderings by making n-wise comparisons for all the categories. They reported that minimal cost-complexity 

pruning was used to identify the optimum-sized tree, while the area under the ROC curve was used to assess the 

performance of the classification tree. The authors in [17] proposed an Ordinal Decision Tree (ODT) method 

which enables the treatment of an ordinal classification as the ordering of a pair of comparisons, because the 

ordinal classification involves a weak ordering between the classes. Thus, in their method, the original class 

orderings are not important and are, therefore, not assigned to the elements in the leaf nodes. These orderings 

are assigned to the dominant branch splits from the node. They termed this induction strategy, the top-slicing 

strategy. They demonstrated that the ODT produces a simpler model with increased ordinal response prediction 

accuracy by comparing the results of 5 datasets to which they applied the ODT algorithms and C4.5 method. 

The author in [18] evaluated the performance of the Neural Networks (NN), decision tree and Logistic 

Regression (LR) analyses for the classification problem by comparing them based on the number of 

uncorrelated independent variables, types of independent variables, number of classes in the independent 

variables, number of classes of dependent variables and sample size on the simulated classification examples. 

The author in [18] reported that NN revealed the best performance in the case of complex characteristics of the 

condition by using uncorrelated simulated data, whereas LR performed best in the case when the number of 

classes of the dependent variable was small, while NN was superior to decision tree and LR in the case when the 

number of classes of the dependent variable was three or more. The author in [19] evaluated the use of C4.5 
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with the bagging and boosting method to predict the total analgesic consumption on medication-Patient 

Controlled Analgesia (PCA) patient dataset by comparing with the NN, support vector machine, random forest, 

rotation forest and naïve Bayesian classifiers. In this study, the dependent variables (total analgesic dose and 

PCA analgesic dose) had three ordinal categories (low, medium and high dose). The performance of the 

methods was compared by using the ten-fold cross validation. Consequently, decision tree-based learning 

revealed a better performance level than the other methods in analgesic consumption. The author in [4] 

compared among the performances of the ordinal splitting rule methods on two different real data sets (birth 

weight data set and gene expression in the B-cell acute lymphocytic leukemia data set). The performance of the 

classification methods were evaluated using the five-fold cross validation and gamma statistics. In both data 

sets, the predictive performance of the ordinal impurity methods was much better than the performance of the 

ordered twoing, and the generalized Gini with linear and quadratic costs of misclassification. The author in [4] 

reported that these splitting rule methods based on the CT are used to model the ordinal response variables for 

high-dimensional data sets such as gene expression data. In the present study, we found that the results were 

similar for each of the simulation and the real data sets. According to the gamma ordinal association measure 

and misclassification error rate, the generalized Gini with linear and quadratic costs of misclassification methods 

performed better for the prediction of the categories of the ordinal response variable than the ordinal impurity 

and the ordered twoing.  

The tree representation in CT shows proximity to the medical reasoning and can help to structure the 

understanding of prediction. The CT provides a comprehensive analytic framework to reveal the optimal design 

of the clinical guidelines and health policy for the prevention and management of albuminuria in type 2 diabetes 

mellitus patients. Therefore, it is an important problem to choose the proper splitting rule and find an optimal 

tree among the classification trees available. 

In our study, we compared the splitting rules by using the simulation and a real data set in order to provide 

information on the general tendency of the data structures in the data sets and thus help researchers to select the 

best splitting rule for solving the problems of classification in predicting an ordinal response. However, only 

limited data on the sufficiency of classification efforts using only one splitting rule is available. Based on these 

considerations, we suggest that the data should be better explored and processed using high performance 

modelling splitting rules. In the future researchers should avoid data assessment by using only one splitting rule 

irrespective of whether the focus is on albuminuria or any other clinical condition.  
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