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Abstract 

The process of tsunami evolution during its generation in search for possible amplification mechanisms 

resulting from spreading of the sea floor uplift in the x-and y-direction is investigated under the effect of rupture 

velocities, uplift length and width and rise times. This study shows that focusing and amplification of tsunami 

amplitudes can occur in an arbitrary direction, determined by the velocities of spreading. Tsunami waveforms 

within the frame of the linearized shallow water theory for constant water depth are analyzed analytically by 

transform methods (Laplace in time and Fourier in space) for the spreading source model. We analyzed the 

normalized peak amplitude as a function of the propagated uplift length, width and the average depth of the 

ocean along the generation path. The amplification of tsunami amplitudes builds up progressively as time 

increases during the generation process due to wave focusing while the maximum wave amplitude decreases 

with time during the propagation process due to the geometric spreading and also due to dispersion. The 

normalized peak amplitudes were smaller when the slip-fault spreads in two orthogonal directions than the 

numerical values for one dimensional solution because of the interaction of the velocities. The maximum 

amplitude amplification is proportion to the propagation length and the width of the source model and inversely 

proportional with the water depth.  
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1. Introduction  

Shallow water waves, or equivalently, long gravity waves are the waves occurring on the free surface of a fluid 

and play an important role in a variety of natural phenomena. In contrast to deep water waves, the wavelengths 

of  the  

shallow water waves are much longer than the water depth. For these reason, the propagation of these waves is 

strongly influenced by the shape of the bottom, see [1]. One representative example is tsunami waves.The 

investigation of the tsunami waves has become of great practical interest that attracts nowadays a lot of attention 

due in part to the intensive human activity in coastal areas. The evaluation of a local tsunami threat is useful to 

get a more effective measure for tsunami warning systems and for protection works.There are different natural 

phenomena that can lead to a tsunami, for example submarine slumps, slides, volcanic explosions, earthquakes, 

etc. 

The massive destruction and loss of life associated with recent tsunamis (Indonesia, 2004; Papua New Guinea, 

1998) has underscored the need to develop and implement tsunami hazard mitigation measures. In recent years, 

significant advances have been made in developing mathematical models to describe the entire process of 

generation and propagation of a tsunami event generated by seismic seafloor deformation caused by an 

underwater earthquake. 

The sea bottom deformation following an underwater earthquake is a complex phenomenon. This is why, for 

theoretical or experimental studies, researchers have often used simplified bottom motions such as the vertical 

motion of a box. Most investigations of tsunami generation and propagation used integral solution (in space and 

time) for an arbitrary bed displacement spreading based on a linearized description of wave motion in either a 

two- or three-dimensional fluid domain of uniform depth . The complexity of the integral solutions developed 

from the linear theory even for the simplest model of bed deformation prevented many authors from 

determining detailed wave behavior, especially near the source region . However, we construct a three-

dimensional source model involved in the transform methods spreading in the x−  and y −directions that 

generates a tsunami near the source region. 

Many authors have used different analytical solutions and numerical computations to determine the general 

wave pattern near and far from the source region for a variety of bed motions in a two-or three-dimensional fluid 

domain.[2] calculated the two-dimensional radiation pattern from a moving source using linear theory.[3] solved 

the linear long-wave equation in the presence of a moving bottom and a uniformly sloping beach. [4] 

investigated analytically the generation of tsunamis by submarine slides. They specialized the general solution 

of the one-dimensional Cauchy linear problem for long water waves to deal with rigid body to explore the 

characteristics of the generated waves. They studied the body motion in terms of Froude number, wave pattern, 

wave amplitude and wave energy. [5] studied the generation of long wave through the ocean by a moving 

bottom. They demonstrated the differences between the classical approach (passive generation) and the active 

generation under the effect of the bottom motion. 
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[6] constructed a numerical model of tsunami generation and propagation depending on a nonlinear theory under 

the effect of a variable bed displacement with constant water depth. They considered nonlinearities and omitted 

the linear effects of frequency dispersion. 

[7] studied theoretically the generated waves by multiplying the static deformations caused by slip along a fault 

by various time laws: instantaneous, exponential, trigonometric and linear. 

[8] performed a comparison between three-dimensional linear and nonlinear tsunami generation models. They 

observed very good agreement from the superposition of the wave profiles computed with the linear and fully 

nonlinear models. In addition, they found that the nonlinear shallow water model was not sufficient to model 

some of the waves generated by a moving bottom because of the presence of frequency dispersion. Moreover, 

they suggested that for most events the linear theory is sufficient. 

[9] discussed the solution of the non-linear problem of propagation of waves generated in a homogeneous fluid, 

occupying an infinite channel, by the bounded motion of the bottom.He demonstrated that the predictions of the 

linear theory are in good agreement with those of the nonlinear theory for sufficiently small amplitude of the 

bottom’s motion. 

[10] investigated the tsunami evolution during its generation under the effect of the variable velocities of 

realistic submarine landslides based on a two-dimensional curvilinear slide model. They described the tsunami 

generation from submarine gravity mass flows in three stages: The first stage represented by a rapid curvilinear 

down and uplift faulting with rise time. The second stage represented by a unilaterally propagation in the 

positive direction to a significant length to produce curvilinear two-dimensional models represented by a 

depression slump, and a displaced accumulation slide model. The last stage represented by the time variation in 

the velocity of the accumulation slide (block slide) by using transforms method. 

[11] studied the nature of the tsunami build up and propagation during and after realistic curvilinear source 

models represented by a slowly uplift faulting and a spreading slip-fault model. They studied the tsunami 

amplitude amplification as a function of the spreading velocity and rise time. They also analyzed the normalized 

peak amplitude as a function of the propagated uplift length, width and the average depth of the ocean. 

Previous studies for tsunami generation considered only one-dimensional movement of kinematic source 

models. For example, [12] studied experimentally the generated waves by raising or lowering a box at one end 

of a channel. He considered two types of time histories: an exponential and a half-sine bed movement.[13] 

investigated the generation of waves by a slowly spreading uplift of the bottom in linearized shallow-water 

wave theory. They showed that the effects of the spreading of the ocean floor deformation (faulting, submarine 

slides or slumps) on the amplitudes and periods of the generated tsunamis are largest when the spreading 

velocity of uplift and the tsunami velocity are comparable.[14] mentioned the source parameters for submarine 

slides and earthquakes including source duration, displacement amplitude, areas and volumes of selected past 

earthquakes that have or may have generated a tsunami. They contributed the nature of tsunami sources to create 

tsunami waveforms in the near field and provided a starting point for their elementary mathematical model.[15] 
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investigated tsunami generation by a slowly spreading uplift of the sea floor in the near field considering the 

effects of the source finiteness and directivity. They described mathematically various two-dimensional 

kinematic models of submarine slumps and slides as combinations of spreading constant or slopping uplift 

functions.There results show that for given constant water depth, the peak amplitude depends on the ratio of the 

spreading velocity of the sea floor to the long wavelength tsunami velocity, see [16]. 

[17] and [18] determined the tsunami amplitudes caused by submarine land slumps and slides spreading in two 

orthogonal directions. All the previous approach mentioned above computed tsunami waveforms using 

linearized shallow water theory and transform methods of solution. We follow the same approach but with a 

more complex source model represented by a sliding Heaviside step function in two orthogonal directions. We 

demonstrated the waveform amplification resulting from the two dimensional source spreading and wave 

focusing in the near-field and the tsunami spreading in the far-field. In this paper we investigate the tsunami 

generation and propagation under the effect of various paraments of a seismic faulting source model spreading 

in two orthogonal directions following an underwater earthquake. This problem is a more extended and 

generalized problem and more sophisticated than one-dimensional problems. This model resembles the initial 

source predicted according to the initial disturbance recorded in [19] and [20]. We discuss aspects of tsunami 

generation that should be considered in developing these model, as well as the propagation wave after the 

formation of the source models have been completed. 

We study the fluid wave motion above finite source, with variable distribution of the ocean floor uplift, for 

variable spreading velocities. Here we aim to demonstrate the large scale tsunami generation features computed 

during the formation of the tsunami source for different ratios between the velocities of the source propagation 

and the tsunami speed, as well as the overall propagation following the source. Comparison between our results 

and others obtained for the tsunami model in the near -field is done. According to the results and the numerical 

estimation, we analyze the normalized peak amplitude as a function of the characteristics size of the source 

model and the water depth.  

2. Mathematical Formulation of the Problem 

Consider a three dimensional fluid domain Ω as shown in Figure 1. It is supposed to represent the ocean above 

the fault area. It is bounded above by the free surface of the ocean z = η(x, y, t) and below by the rigid ocean 

floor z = −h(x, y) + ζ(x, y, t) , where η(x, y, t)  is the free surface elevation, h(x, y)  is the water depth and 

ζ(x, y, t) is the sea floor displacement function. The domain Ω is unbounded in the horizontal directions x and y, 

and can be written as Ω = R2 × [−h(x, y) + ζ(x, y, t),η(x, y, t)] . For simplicity, h(x, y)  is assumed to be a 

constant. Before the earthquake, the fluid is assumed to be at rest, thus the free surface and the solid boundary 

are defined by z = 0 and z = −h, respectively. Mathematically, these conditions can be written in the form of 

initial conditions: η(x, y, 0) = ζ(x, y, 0) = 0. At time t > 0, the bottom boundary moves in a prescribed manner 

which is given by z = −h + ζ(x, y, t). The deformation of the sea bottom is assumed to have all the necessary 

properties needed to compute its Fourier transform in x , y  and its Laplace transform in t . The resulting 

deformation of the free surface z = η(x, y, t) is to be found as part of the solution. It is assumed that the fluid is 

incompressible and the flow is irrotational. The former implies the existence of a velocity potential Φ(x, y, z, t) 
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which fully describes the flow and the physical process. By definition of Φ, the fluid velocity vector can be 

expressed as q⃖� = ∇Φ. Thus, the potential flow Φ(x, y, z, t) must satisfy the Laplace’s equation  

 ∇2Φ(x, y, z, t) = 0         where         (x, y, z) ∈ Ω , (1) 

 The potential Φ(x, y, z, t) must satisfy the following kinematic and dynamic boundary conditions on the free 

surface and the solid boundary, respectively:  

 Φz = ηt +Φxηx + Φyηy         on         z = η(x, y, t) , (2) 

 Φz = ζt + Φxζx + Φyζy          on         z = −h + ζ(x, y, t) , (3) 

 and  

 Φt + 1
2

 (∇Φ)2 +  g  η = 0         on         z = ζ(x, y, t) . (4) 

 where g is the acceleration due to gravity. As described above, the initial conditions are given by  

 Φ(x, y, z, 0) = η(x, y, 0) = ζ(x, y, 0) = 0 . (5) 

 

 

 

 

 

 

Figure  1: Definition of the fluid domain and coordinate system for a very rapid movement of the assumed 

source model. 

2.1 Linear Shallow Water Theory 

Various approximations can be considered for the full water-wave equations. One is the system of Boussinesq 

equations that retains nonlinearity and dispersion up to a certain order. Boussinesq model is used to study 

transient varying bottom problems. [21] and [22] presented a developed numerical model based on the highly 

accurate Boussinesq-type formulation subjected to exact expressions for the kinematic and dynamic free surface 

conditions. Their results show that the model was capable of treating the full life cycle of tsunami evolution, 

from the initial generation of bottom movements, to the subsequent propagation, and through the final run-up 
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process. Reasonable computational efficiency has been demonstrated in their work, which made the model 

attractive for practical coastal engineering studies, where high dispersive and nonlinear accuracy is sought. 

Another one is the system of nonlinear shallow-water equations that retains nonlinearity but no dispersion. 

Solving this problem is a difficult task due to the nonlinearities and the a priori unknown free surface. The 

concept of shallow water is based on the smallness of the ratio between water depth and wave length. In the case 

of tsunamis propagating on the surface of deep oceans, one can consider that shallow-water theory is appropriate 

because the water depth (typically several kilometers) is much smaller than the wave length (typically several 

hundred kilometers), which is reasonable and usually true for most tsunamis triggered by submarine 

earthquakes, slumps and slides, see [7] and [12]. Hence, the problem can be linearized by neglecting the 

nonlinear terms in the boundary conditions (2) - (4) and applying the boundary conditions on the nondeformed 

instead of the deformed boundary surfaces ( i.e. 𝐳𝐳 = −𝐡𝐡  and on 𝐳𝐳 = 𝟎𝟎  instead of 𝐳𝐳 = −𝐡𝐡+ 𝛇𝛇(𝐱𝐱,𝐲𝐲, 𝐭𝐭)  and 

𝐳𝐳 = 𝛈𝛈(𝐱𝐱, 𝐲𝐲, 𝐭𝐭) ). The linearized problem in dimensional variables can be written as  

  

∇2Φ(x, y, z, t) = 0  where  (x, y, z) ∈ R2 × [−h, 0] , (6) 

 subjected to the following boundary conditions   

 Φz = ηt             on  z = 0 , (7) 

 Φz = ζt         on  z = −h , (8) 

 Φt + g η = 0    on  z = 0 , (9) 

  The linearized shallow water solution can be obtained by the Fourier-Laplace transform.  

2.2  Solution of the Problem 

Our interest is the resulting uplift of the free surface elevation η(x, y, t). An analytical analysis is examine to 

illustrate the generation and propagation of a tsunami for a given bed profile ζ(x, y, t). Mathematical modeling 

of waves generated by vertical and lateral displacements of submarine slide and slump using the combined 

Fourier-Laplace transform of the Laplace equation analytically is the simplest way of studying tsunami 

development. All our studies were taken into account constant depths for which the Laplace and Fast Fourier 

Transform (FFT) methods could be applied. The equations (6 - 9) can be solved by using the method of integral 

transforms. We apply the Fourier transform in (x, y) 

 ℱxy {f(x, y)} = f ∗∗(k1, k2) = ∫ ∞
−∞ ∫ ∞

−∞ e−i(k1 x+k2y) f(x, y) dx dy , 

 with its inverse transform  

 ℱk1k2
−1 {f ∗∗(k1, k2)} = f(x, y) = 1

(2π)2 ∫ ∞
−∞ ∫ ∞

−∞ ei(xk1+yk2)f ∗∗(k1, k2) dk1 dk2 , 
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 and the Laplace transform in time t is defined as  

 ℒ{g(t)} = g�(s) = ∫ ∞
0 e−st  g(t) dt . 

 Combining (7) and (9) yields the single free-surface condition  

 Φtt (x, y, 0, t) +  g  Φz(x, y, 0, t) = 0 . (10) 

 After applying the transforms and using the property �ℱ �dn  f
dxn� = (i k)nf ∗(k)� and the initial conditions (5), 

Equations (6), (8) and (10) become,  

 Φ�zz
∗∗(k1, k2, z, s) − (k1

2 + k2
2)Φ�∗∗(k1, k2, z, s) = 0 , (11) 

 Φ�z
∗∗(k1, k2,−h, s) = s ζ�

∗∗
(k1, k2, s) , (12) 

 s2Φ�∗∗(k1, k2, 0, s) +  g  Φ�z
∗∗(k1, k2, 0, s) = 0 . (13) 

 The transformed free-surface elevation can be obtained from (9) as  

 η�∗∗(k1, k2, s) = − s
 g 
Φ�∗∗(k1, k2, 0, s) = 0 . (14) 

 A general solution of (11) will be given by  

 Φ�∗∗(k1, k2, z, s) = A(k1, k2, s) cosh(k z) + B(k1, k2, s) sinh(k z) . (15) 

where k = �k1
2 + k2

2 . The functions A(k1, k2, s)  and B(k1, k2, s)  can be easily found from the boundary 

conditions (12) and (13):   

 A(k1, k2, s) cosh(k z) = −  g  s  ζ�∗∗(k1,k2,s)
cos h(k h) [s2+ g  k tan h(k h)]

 , (16) 

 B(k1, k2, s) cosh(k z) = s3ζ�∗∗(k1,k2,s)
k cos h(k h) [s2+ g  k tan h(k h)]

 . (17) 

  Substituting (16,17) in the general solution (15) yields  

 Φ�∗∗(k1, k2, z, s) = −  g  s ζ�∗∗(k1,k2 ,s)
cos h(k h) (s2+ω2 )

�cosh(k z)− s2

 g  k
 sinh(k z)� . (18) 

 where ω = � g  k tanh(k h)  is the circular frequency of the wave motion. The free surface elevation 

η∗∗(k1, k2, s) can be obtained from (14) as  

 η�∗∗(k1, k2, s) = s2ζ�∗∗(k1,k2,s)
(s2+ω2 ) cos h(kh)

 , (19) 
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 The circular frequency ω describes the dispersion relation of tsunamis and implies phase velocity c = ω
k
 and 

group velocity U = dω
dk

. Hence, c = �g tan h(kh)
k

, and U = 1
2

 c �1 + 2kh
sin h (2kh)

� . Since, k = 2 π
λ

,hence as kh → 0, 

both c → �gh  and U → �gh , which implies that the tsunami velocity vt = �gh  for wavelengths λ  long 

compared to the water depth h. The free surface elevation η(x, y, t) can be evaluated for a specified ζ(x, y, t) by 

obtaining its transform ζ�
∗∗

(k1, k2, s), then substituting it into (19) and inverting η�∗∗(k1, k2, s) analytically to 

obtain η∗∗(k1, k2, t) which is further converted to η(x, y, t) by using double inverse Fourier Transform. The 

above linearized solution is known as the shallow water solution. 

The free surface elevation η∗∗(k1, k2, t) can be evaluated by using inverse Laplace transform of η∗∗(k1, k2, s) 

from the Convolution theorem as follows  

 η∗∗(k1, k2, t) = 1
cos h(kh)

�ζ∗∗(k1, k2, t)− ω∫ t
0  sin(ω(t− u)) ζ∗∗(k1, k2, u) du� , (20) 

 The sea floor displacement is taken as  

 ζ(x, y, t) = ζ0 H �t− x
v1
�  H�t− y

v2
� , (21) 

 where H(x) represents the Heaviside function and ζ0 denotes the initial uplift of the bottom topography. Fourier 

transform can now be applied to the bottom topography (21) to obtain  

 

ζ∗∗(k1, k2, t) = ζ0 �∫ L1
0 e−ik1 x  H�t− x

v1
�  dx� �∫ L2

0 e−ik2 y  H�t− y
v2
�  dy�

= ζ0 ��
∫ tv1

0 e−ik1 x  dx , for    t ≤ t1
∗

∫ L1
0 e−ik1 x  dx , for    t > t1

∗

����
∫ tv2

0 e−ik2y  dy , for    t ≤ t2
∗

∫ L2
0 e−ik2y  dy , for    t > t2

∗

��

= ζ0 �
−1

k1k2
���

�1− e−ik1v1t� , for    t ≤ t1
∗

�1− e−ik1L1� , for    t > t1
∗

����
�1− e−ik2 v2t� , for    t ≤ t2

∗

�1− e−ik2 L2� , for    t > t2
∗

��

= ζ0 �
−1

k1k2
�

⎩
⎪
⎪
⎨

⎪
⎪
⎧�1− e−ik1 v1t��1− e−ik2v2t� , for    t ≤ t1

∗      and     t ≤ t2
∗

�1− e−ik1 v1t��1− e−ik2L2� , for    t ≤ t1
∗      and     t > t2

∗

�1− e−ik1 L1��1− e−ik2v2t� , for    t > t1
∗      and     t ≤ t2

∗

�1− e−ik1 L1��1− e−ik2L2� , for    t > t1
∗      and     t > t2

∗

�

= ζ0 �
−1

k1k2
�∑ 4

i=1 Ii(k1, k2, t)

 (22) 

 where t1
∗ = L1

v1
  and  t2

∗ = L2
v2

 , L1 and L2 represents the propagated uplift length and width, v1 and v2 denoted the 

rupture velocities of the slip fault in the x− and y − direction respectively and  
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I1(k1, k2, t) = I11 (k1, k2, t) H(t1
∗ − t) H(t2

∗ − t)
I2(k1, k2, t) = I21 (k1, k2, t) H(t1

∗ − t) H(t− t2
∗)

I3(k1, k2, t) = I31 (k1, k2, t) H(t − t1
∗) H(t2

∗ − t)
I4(k1, k2, t) = I41 (k1, k2, t) H(t − t1

∗) H(t− t2
∗)

 (23) 

 and  

 

I11 (k1, k2, t) = �1− e−ik1v1t��1− e−ik2v2t�
I21 (k1, k2, t) = �1− e−ik1v1t��1− e−ik2L2�
I31 (k1, k2, t) = �1− e−ik1L1��1− e−ik2v2t�
I41 (k1, k2, t) = �1− e−ik1L1��1− e−ik2L2�

 (24) 

 Substituting (22) into the integral of (20), we obtain  

 ∫ t
0  sin(ω(t− u)) ζ∗∗(k1, k2, u) du = ζ0 �

−1
k1k2

�∑ 4
i=1 ∫ t

0  sin(ω(t− u)) Ii(k1, k2, u) du (25) 

 where  

 ∫ t
0  sin(ω(t− u)) I1(k1, k2, u) du = ∫ min (t,t1

∗ ,t2
∗ )

0  sin(ω(t− u)) I11 (k1, k2, u) du (26)  

 ∫ t
0  sin(ω(t− u)) I2(k1, k2, u) du = ∫ min (t,t1

∗ )
t2
∗  sin(ω(t− u)) I21 (k1, k2, u) du (27) 

 ∫ t
0  sin(ω(t− u)) I3(k1, k2, u) du = ∫ min (t,t2

∗ )
t1
∗  sin(ω(t− u)) I31 (k1, k2, u) du (28) 

 ∫ t
0  sin(ω(t− u)) I4(k1, k2, u) du = ∫ t

max (t1
∗ ,t2

∗ )  sin(ω(t− u)) I41 (k1, k2, u) du (29) 

 The integral of equation (26) is written as :  

 

∫ t
0 sin(ω(t − u)) I1(k1, k2, u) du =

cos (ω (t−min (t,t1
∗ ,t2

∗ )))−cos (ω t)
ω

− e− min (t ,t1
∗ ,t2

∗ ) i  k 1v 1

ω2−k1
2 v1

2 (ω cos(ω (min(t, t1
∗ , t2

∗)− t)) + i k1v1 sin(ω (min(t, t1
∗ , t2

∗)− t)))

− i k1 v1 sin (ω t)−ω cos (ω t)
ω2−k1

2v1
2

− e− min (t ,t1
∗ ,t2

∗ ) i  k 2v 2

ω2−k2
2 v2

2 (ω cos(ω (min(t, t1
∗ , t2

∗)− t)) + i k2v2 sin(ω (min(t, t1
∗ , t2

∗)− t)))

− i k2 v2 sin (ω t)−ω cos (ω t)
ω2−k2

2v2
2

+ e−min (t ,t1
∗ ,t2

∗ ) i  (k 1v1+k 2v 2)

ω2− (k1v1+k2v2)2 (ω cos(ω (min(t, t1
∗ , t2

∗)− t)) + i (k1v1 + k2v2) sin(ω (min(t, t1
∗ , t2

∗)− t)))

+ i (k1v1+k2v2) sin (ω t)−ω cos (ω t)
ω2− (k1v1+k2 v2)2

(30)  

 The same can be done for equations (27), (28) and (29). The free surface elevation η∗∗(k1, k2, t) will be given 

as :  
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η∗∗(k1, k2, t) = ζ0
cos h(kh)

� −1
k1k2

� [∑ 4
i=1 Ii(k1, k2, t)�

−ω �∫ min (t,t1
∗ ,t2

∗ )
0  sin(ω(t− u)) I11 (k1, k2, u) du�

        +∫ min (t,t1
∗ )

t2
∗  sin(ω(t− u)) I21 (k1, k2, u) du

        +∫ min (t,t2
∗ )

t1
∗  sin(ω(t− u)) I31 (k1, k2, u) du

        + ��∫ t
max (t1

∗ ,t2
∗ )  sin(ω(t− u)) I41 (k1, k2, u) du��

 (31) 

 This completes the solution of the problem, η∗∗(k1, k2, t), in the double Fourier transform domain. 

Finally, η(x, y, t) is evaluated using the inverse fast Fourier transform (IFFT). The IFFT is a fast algorithm for 

efficient implementation of the Inverse Discrete Fourier Transform (IDFT). In this paper, this inversion is done 

using the Matlab IFFT algorithm. 

In order to implement the algorithm efficiently, singularities should be removed by finite limits as follows:  

    1.  As k → 0, implies k1 → 0, k2 → 0 and ω → 0, then η∗∗(k1, k2, t) has the following limit:  

 lim
k→0

η∗∗(k1, k2, t) = ζ0 (v1v2) �ζ∗∗(k1, k2, t)|k=0 

 where  

 
�ζ∗∗(k1, k2, t)|k=0 =  t2 H(t1

∗ − t) H(t2
∗ − t) + t t2

∗  H(t1
∗ − t) H(t− t2

∗)
+ t1

∗  t H(t− t1
∗) H(t2

∗ − t) + t1
∗t2
∗  H(t− t1

∗) H(t− t2
∗) 

    2.  As k1 → 0, implies k = k2 and ω = �g k2 tanh(k2h), then η∗∗(k1, k2, t) has the following limit:  

 lim
k→0

η∗∗(k1, k2, t) = 1
cos h(k2h)

��ζ∗∗(k1, k2, t)|k1=0 − ω∫ t
0  sin(ω(t− u)) �ζ∗∗(k1, k2, u)|k1=0 du � (32) 

 where  

 

�ζ∗∗(k1, k2, t)|k1=0 = ζ0
v1
ik2

� t �1− e−ik2 v2t� H(t1
∗ − t) H(t2

∗ − t)�

+t �1− e−ik2L2� H(t1
∗ − t) H(t − t2

∗)
+t1

∗�1− e−ik2v2t� H(t− t1
∗) H(t2

∗ − t)
�+t1

∗�1− e−ik2L2� H(t− t1
∗) H(t− t2

∗)�

 (33) 

 and  
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∫ t
0  sin(ω(t− u)) �ζ∗∗(k1, k2, u)|k1=0 du

= ζ0
v1
ik2
�∫ min (t,t1

∗ ,t2
∗ )

0  sin(ω(t− u)) u �1 − e−ik2v2u� du�

                +∫ min (t,t1
∗ )

t2
∗  sin(ω(t− u)) u �1− e−ik2L2� du

                +∫ min (t,t2
∗ )

t1
∗  sin(ω(t− u)) t1

∗�1− e−ik2v2u� du

                 + �∫ t
max (t1

∗ ,t2
∗ )  sin(ω(t− u)) t1

∗�1− e−ik2 L2� du �

 (34) 

    3.  As k2 → 0, implies k = k1 and ω = �g k1 tanh(k1h), then η∗∗(k1, k2, t) has the following limit:  

 lim
k→0

η∗∗(k1, k2, t) = 1
cos h(k2h)

��ζ∗∗(k1, k2, t)|k2=0 − ω∫ t
0  sin(ω(t− u)) �ζ∗∗(k1, k2, u)|k2=0 du � (35) 

 where  

 

�ζ∗∗(k1, k2, t)|k2=0 = ζ0
v2
ik1

� t �1− e−ik1 v1t� H(t1
∗ − t) H(t2

∗ − t)�

+t2
∗ �1− e−ik1v1t� H(t1

∗ − t) H(t − t2
∗)

+t �1− e−ik1L1� H(t− t1
∗) H(t2

∗ − t)
�+t2

∗ �1− e−ik1L1� H(t− t1
∗) H(t− t2

∗)�

 (36) 

 and  

 

∫ t
0  sin(ω(t− u)) �ζ∗∗(k1, k2, u)|k2=0 du

= ζ0
v2
ik1
�∫ min (t,t1

∗ ,t2
∗ )

0  sin(ω(t− u)) u �1 − e−ik1v1u� du�

                +∫ min (t,t1
∗ )

t2
∗  sin(ω(t− u)) t2

∗ �1− e−ik1v1u� du

                +∫ min (t,t2
∗ )

t1
∗  sin(ω(t− u)) u �1− e−ik1L1� du

                + �∫ t
max (t1

∗ ,t2
∗ )  sin(ω(t− u)) t2

∗ �1− e−ik1L1� du �

 (37) 

3. Results and Discussion 

In this section, we present numerical results to illustrate the nature of the tsunami build up and propagation 

during and after the uplift process of the bottom topography spreading in both x− and y −directions. This 

model was used to evaluate tsunami waveforms up to distances of several source dimensions, for various 

combinations of the model parameters (depth to the sea bed, h, fault length and width, L1 and L2, and velocities 

of rupture propagation along the fault length and width; in the positive x− and y −directions with v1 and v2, 

respectively, and time since rupture initiation, t). The numerical results demonstrate the waveform amplification 

resulting from source spreading in two orthogonal directions and wave focusing in the near-field and the 

tsunami spreading in the far-field under the effect of different factors. 

When the source process is completed and for rapid lateral spreading, the displacement of the free surface above 

the source resembles the displacement of the ocean floor. For velocities of spreading smaller thanvt  then the 

tsunami amplitudes in the direction of the source propagation become small with high frequencies. As the 
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velocity of the spreading approaches vt , the tsunami waveform has progressively larger amplitude, with high 

frequency content, in the direction of the slip spreading, see [11] and [13]. These large amplitudes are caused by 

wave focusing (i.e. during slow earthquakes). Examples of such slow earthquakes are the June 6, 1960, Chile 

earthquakes which ruptured as a series of earthquakes for about an hour, see [23], and the February 21, 1978, 

Banda Sea earthquake, see [24]. 

Tsunami generally occurs due to vertical movement of the seafloor that vertically displaces the water column. 

Large vertical displacement of the sea bottom ground causes a corresponding large motion at the sea surface. 

The generation of tsunami by vertical displacements of the ocean floor depends on the characteristic size (length 

L1 and width L2) of the displaced area and on the time t it takes to spread the motion over the entire source 

region. Horizontal deformation of the sea bottom ground does not cause large changes at the sea surface. 

Therefore, researchers presented kinematic source models in the form of Heaviside functions to describe the 

generation of tsunamis, see [12 - 17]. 

It is difficult to estimate, at present, how often the amplification may occur during actual faulting, sliding or 

slumping, because of the lack of detailed knowledge about the ground deformations in the source area of past 

tsunamis. Therefore, we construct mathematically a tsunami source model represented by a sliding Heaviside 

step function spreading in two orthogonal directions. We first examine the significance of the spreading 

velocities of the ocean floor uplift by comparing displacement waveforms in 3 −dimensional frame of work for 

various values of the ratio v1/v2.  

3.1 Effect of the spreading velocities𝒗𝒗𝟏𝟏 and 𝒗𝒗𝟐𝟐 on tsunami generation waveform 

In this section, the focusing and the amplification of the tsunami amplitude, determined by the velocities of 

spreading is studied. The effect of the spreading velocities on the tsunami generation is illustrated in Figure 2 for 

spreading length L1 and spreading width L2  equal 100 km, and water depth h = 2 km at the time when the 

source process is completed (i.e. at t = t2
∗ = L2/v2) and v = �v1

2 + v2
2 represents the resultant velocity. It can 

be observed in Figures 1 and 1 that the case when v1 = v2  at t = t2
∗ = L2/v2 can be considered a case of 

symmetric collisions between two waves of equal amplitudes. It is known from [25] that waves in collisions 

always lose a small amount of amplitude due to the collision even for interactions between large waves in 

comparable with the case when v1 ≠ v2 as shown in Figures (2c) and (2d). The residual is clearly visible in the 

Figure (2a) which were in the form of wave trains behind the leading wave. It can be observed from Figure (2b) 

that the maximum amplification occurs when v1 = v2 = vt  at water depth h = 2 km which agrees with the 

work done by [11] and [13] whom verified that the amplification η/ζ0 is largest when the velocity of the uplift 

is close to the velocity of the tsunami wave due to wave focusing at the time when the source process is 

completed. Hence, we chose the case in which the velocities of the sea floor are equal to the long wave tsunami 

velocity vt  (i.e. maximum amplification) in studying the generation and propagation of the tsunami waveforms. 

The amplification shown in Figure 2 depends on the spreading velocities v and the time t taken to spread the 

motion over the entire source region. This observation can be verified by comparing the result obtained in 

Figure (2b) with the tsunami waveform obtained by using a kinematic source model represented by a sliding 
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Heaviside step function spreading in one direction (i.e. neglecting the vertical co-seismic displacement in the 

y−direction and hence it propagates instantaneously). This case was studied by [13]. They considered a square 

source model characterized by L1 = L2 = 50 km, with uniform final elevation ζ0, and the velocity of lateral 

spreading of the ocean floor uplift was constant. We expand the propagation length L1 to 100 km and L2 to 

100 km for the Heaviside step function in order to make comparison with the results we obtained.   

 

 

 

 

 

 (a)   v1 = v2andv = vt = �v1
2 + v2

2 at t = t2
∗ = L2

v2
  

 

 

 

 

 

 

          

  (b)   v1 = v2 = vtatt = t2
∗ = L2
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(c)   v1 = 0.5v2andv = vt = �v1
2 + v2

2 at t = t2
∗ = L2

v2
 

 

 

 

 

 

   (d)   v2 = 0.5v1andv = vt = �v1
2 + v2

2 at t = t1
∗ = L1

v1
 

Figure 2: The normalized tsunami waveforms  η/ζ0 for different spreading velocities v1 and v2 at L1 = L2 =

100 km and h = 2 km. 

Figure 3 illustrates the cross section from the y −direction of the tsunami waveforms generated by the sliding 

Heaviside step function spreading in two orthogonal directions and the slide model spreading in one direction 

with L1 = 100 km and L2 = 100 km when the maximum amplitude amplification occurs at v = vt . It can be 

observed when v1 = v2 = vt  obtained normalized peak amplitudes η/ζ0 smaller than the numerical values for 

one dimensional solution. This happened because of the interaction of the velocities. The cross section taken 

either from the x− or y−directions is the same for the tsunami waveforms generated by the sliding Heaviside 

step function spreading in two orthogonal directions when v1 = v2 = vt , due to the symmetry in the generation 

of the free surface elevations.  
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Figure  3: Maximum tsunami amplitude at spreading velocity generated by fault source model spreading in one 

direction for v = vt  and the fault source model spreading in two orthogonal directions for at t = t2
∗ = L2/v2. 

 

3.2 Tsunami Generation and Propagation-Evolution in Time 

The effects of variations of the spreading fault source in two orthogonal movements on the generation and 

propagation of tsunamis above and away from the considered source model are studied as a function of time t in 

Figures 4 and 5, respectively. These effects are studied through the investigation of the generation and 

propagation of tsunamis by movement in the x− and y−direction of the seismic faulting under the effect of the 

characteristic size length L1 and width L2 of the displaced area and the water depth h. Previous studies neglected 

the vertical co-seismic displacement in the y−direction and hence it propagates instantaneously, see [13 - 16]. 

In this study, we considered the spreading of the seismic faulting in two orthogonal directions according to the 

tsunami event of the 2012 Indian Ocean earthquakes where the rupture of these earthquakes occurred on 

multiple, almost orthogonal faults and the Was Grand Banks event of 1929 a slump spreading in two directions 

[17]. The process of tsunami generation and propagation for the spreading fault model in two orthogonal 

directions is illustrated in Figures 4 and 5, respectively, for L1 = L2 = 100 km at water depth h = 2 km with 

constant spreading velocities v1 = v2 = vt  at time generation t = 0.25 t2
∗ , 0.5 t2

∗ , 0.75 t2
∗  and t2

∗  where t2
∗ =

L2/v2  and time propagation t = 2 t2
∗ , 3 t2

∗ , 4 t2
∗  and 5 t2

∗ . Figure 6 represents the side view of the waves 

illustrated in Figures 4 and 5. It can be seen from Figure 4 that the amplitude of the wave builds up 

progressively in two directions as t  increases due to wave focusing. The wave will be focusing and the 

amplification may occur above the spreading edge of the source model, which can be observed from Figure (6a). 

This amplification occurs above the source progressively, as the source evolves, by adding uplifted fluid to the 

fluid displaced previously by uplifts of preceding source segments. As the spreading length and width in the 

fault increases, the amplitude of the tsunami wave increases. As the wave propagates, the maximum wave 

amplitude decreases with time due to the geometric spreading and also due to the dispersion causing a train of 

small waves forms behind the main wave, as shown in Figures 5 and (6b).   
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                                                                            (a) at 𝑡𝑡 = 0.25 𝑡𝑡2
∗ 

 

 

 

 

                                                                          (b) at 𝑡𝑡 = 0.5 𝑡𝑡2
∗ 

 

 

 

 

                                                                           (c) at 𝑡𝑡 = 0.75 𝑡𝑡2
∗ 

 

 

 

 

                                                                             

(d) at 𝑡𝑡 = 𝑡𝑡2
∗ 

Figure  4: 3-dimensional view of tsunami generated waveforms at time t = 0.25t2
∗ , 0.5t2

∗ , 0.75t2
∗  and t2

∗  
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                                                                                      (a) at 𝑡𝑡 = 2 𝑡𝑡2
∗ 

 

 

 

 

                                                                                      (b) at t = 3 t2
∗  

 

 

 

 

                                                                                      (c) at t = 4 t2
∗  

 

 

 

 

                                                                                      (d) at t = 5 t2
∗  

Figure  5:  Three-dimensional view of tsunami propagated waveforms at time t = 2 t2
∗ , 3 t2

∗ , 4 t2
∗  and 5t2

∗  
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                                                (a) Tsunami generated waveforms 

 

 

 

 

 

                                                 (b) Tsunami propagated waveforms 

Figure  6: Side view of tsunami generation and propagated waveforms 

3.3 Effect of propagated uplift length 𝑳𝑳𝟏𝟏 and width 𝑳𝑳𝟐𝟐 on tsunami generation waveform 

The generation of tsunamis by vertical displacements of the ocean floor depends on the characteristic size length 

L1 and width L2 of the displaced area and on the time t over the entire source region as shown in Figure 7. It is 

seen as the spreading length L1 and width L2 in the bottom topography increase, the amplitude of the tsunami 

waves increases.   

 

 

 

 

                                                                                (a)  L1 × L2 = 50 × 50 
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                                                                                (b)  L1 × L2 = 100 × 100 

 

 

 

 

 

                                                                                (c)  L1 × L2 = 150 × 150 

 

 

 

 

 

                                                                                        

(d)  Side view 

Figure  7: The normalized tsunami generation waveformsη/ζ0 at different propagated uplift length L1 and 

widthL2v1 = v2 = vt  and h = 2 km at t = t2
∗ = L1/vt  

Table 1 shows the variation in the amplification factorηmax /ζ0 for various values of the propagated uplift length 

L1 and width L2 at h = 2 km and t = t1
∗ = L1/v1. It can be seen from the table that for L1/h between 5 and 

250, varies from 0.3384 to 14.920. It can be observed that the amplification increases with the increase inL1/h 

and with the increase in L2/h. The numerical results obtained in Table 1 agrees with the aspect of the 

amplification factor of the tsunami waves obtained in [13] which was created by an uplift of a rectangular area 
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of the sea floor spreading in one direction. By comparing our numerical results with the results obtained in [13], 

we observed larger normalized peak wave amplitude in the work done for the uplift of the sea floor spreading in 

one direction than in our work for the uplift of the sea floor spreading in two orthogonal directions which was 

expected due to the interaction of the velocities in the two directions. 

Table 1. Values of  ηmax /ζ0  at  v1 = v2 = vt  and h = 2 km with various values of L1 and L2at  t = t1
∗ =  L1/

v1. 

𝐋𝐋𝟏𝟏/𝐡𝐡𝐋𝐋𝟐𝟐/𝐋𝐋𝟏𝟏 

( h = 2 km )               0.25                 0.5                   0.75                1 

5        0.3384         0.6597         0.8115     0.8511   

10        0.8359         1.2700         1.4080       1.4160 

25        2.0000         2.7200         2.8300     2.8300 

50        3.7220         4.6500         4.6870              4.6870        

100        6.6310         7.7590         7.7640          7.7640      

250      13.9200         14.920         14.920     14.920 

 

Figure 8 represents the values of the normalized peak wave amplitude ηmax /ζ0 at v1 = v2 = vt  and h = 2 km 

for different values for L2/L1 obtained from Table 1. It is seen how the increase in the propagation uplift length 

and width increases the normalized peak wave amplitude.  

 

 

 

 

 

 

Figure  8: The normalized peak wave amplitude ηmax /ζ0 versus the dimensionless parameter L1/h for v1 =

v2 = vt  
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3.4 Effect of water depth 𝒉𝒉 on tsunami generation waveform 

The effect of the water depth h on the normalized tsunami waveforms is illustrated for various values of h = 2, 

4 and 6 km at constant propagated uplift length L1 and width L2 equal 100 km in Figure 9. It can be seen from 

Figure 9 that the amplitude of the normalized tsunami waveforms decreases from 4.687 m at h = 2 km to 

2.099 m at h = 6 km. Hence it can be observed that maximum amplitude amplification of the normalized 

tsunami waveforms decrease with the increase in the water depth. This phenomenon happens because the speed 

of the tsunami is related to the water depth. As water depth decreases, the velocity decreases producing small 

wavelength and hence the height of the wave grows as the change of total energy of the tsunami remains 

constant. Mathematically, wave energy is proportional to both the wavelength and squared height of the wave. 

Therefore, if the energy remains constant and the wavelength increases, then the height must decreases. The 

results shown in Figure 9 for the spreading source model in two orthogonal directions agree with the aspect for 

the source models obtained by [10], [11] and [26] whom verified that wave amplitude is inversely proportional 

to water depth for uplift source models spreading in one direction. 

 

 

 

 

 

 

                                                                                   (a)  h = 2  km 

 

 

 

 

 

                                                                                   

(b)  h = 4  km 
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                                                                                   (c)  h = 6  km 

 

 

 

 

                                                                                    

(d)  Side view 

Figure  9: Effect of the water depth h on the normalized tsunami generation waveforms η/ζ0 for L1 = L2 =

100 km and v1 = v2 = vt  at t = t2
∗ = L2/v2 

Table 2 presents the effect of the water depth h on the amplification factor ηmax /ζ0 for various values of the 

ratios L2/L1 and at constant propagation L1 = 100 km. It is seen that for h between 0.5 and 6 km, ηmax /ζ0 is 

varies from 11.66 to 2.099. The values determined in Table 2 shows that the maximum amplitude amplification 

decreases with the increase in h.   

Table  2: Values of ηmax /ζ0 at v1 = v2 = vt  and h = 2 km with various values of L1 and L2 at t = t1
∗ = L1/v1 

h ( km ) 

 

𝐋𝐋𝟐𝟐/𝐋𝐋𝟏𝟏 

0.25 0.5                    0.75                    1.0     

0.5 11.660 12.770 12.780 12.780  

1 6.633 7.589 7.593 7.593  

2 3.722 4.650 4.687 4.687  

3 2.609 3.424 3.502 3.502  

4 2.021 2.724 2.830 2.830  

5 1.650 2.286 2.403 2.403  

6 1.388 1.966 2.099 2.099  
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Figure 10 represents the values of the normalized peak wave amplitude ηmax /ζ0  at v1 = v2 = vt  and L1 =

100 km for different values for h obtained from Table 2. It is seen how the increase in the water depth h 

decreses the normalized peak wave amplitude. 

 

 

 

 

 

 

Figure  10: The normalized peak wave amplitude ηmax /ζ0 versus the water depth h for v1 = v2 = vt ,  

L2/L1 ≥ 0.25 andL1 = 100 km . 

4. Conclusions 

In this paper, the process of tsunami generation and propagation was investigated over an uplift fault source 

model spreading in two orthogonal directions. We studied the effect of the variation velocities of rupture 

propagation along the fault length and width; in the positive 𝑥𝑥 − and 𝑦𝑦 − directions with 𝑣𝑣1 and 𝑣𝑣2 respectively 

on the tsunami waveforms. It was observed that the largest peak of the tsunami amplitude at time 𝑡𝑡∗ occurs 

when 𝑣𝑣1 = 𝑣𝑣2 = 𝑣𝑣𝑡𝑡  due to wave focusing. It was observed when 𝑣𝑣1 = 𝑣𝑣2 = 𝑣𝑣𝑡𝑡  obtained normalized peak 

amplitudes 𝜂𝜂
𝜁𝜁0

 smaller than the numerical values for one dimensional solution because of the interaction of the 

velocities. This phenomenon was ignored in the previous studies. Accordingly, this study might help to explain 

some unpredictable outcomes of tsunamis. We demonstrated the waveform amplification resulting from fault 

source model spreading in the 𝑥𝑥 − and 𝑦𝑦 − directions and wave focusing in the near-field and the tsunami 

spreading in the far-field at 𝑣𝑣1 = 𝑣𝑣2 = 𝑣𝑣𝑡𝑡 . It was observed that near the source model, the wave has large 

amplitude. This amplification depends on the characteristic size of the displaced area and the time it takes to 

spread the motion over the entire source region. As the tsunami further departed away from the source the 

amplitude decreased due to dispersion. We illustrated and numerically analyzed the dependence of the peak 

amplification of the tsunami waveforms by changing the length of propagation, the width of the source and the 

water depth. It was found that the maximum amplitude amplification is proportion to the propagation length and 

the width of the source model and inversely proportional with the water depth. These results agreed with the 

aspect of the tsunami generated by the spreading uplift of the ocean bottom in one direction presented by [10, 

11, 13, 26]. 
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