The Non-Negative $\mathbf{P}_{\mathbf{0}}$-Matrix Completion Problem for 5×5 Matrices Specifying Digraphs with 5 Vertices and 3 Arcs.

Munyiri Juma ${ }^{\text {a* }}$, Kamaku Waweru ${ }^{\text {b }}$,Nyaga Lewis ${ }^{\text {c }}$
${ }^{\text {a.b,c }}$ Jomo Kenyatta University of Agriculture and Technology, Department of Pure and Applied
Mathematics. P. O. Box 6200-0200, Nairobi, Kenya
${ }^{a}$ Email: munyirijuma@gmail.com
${ }^{\text {b }}$ Email: wkamaku@jkuat.ac.ke
${ }^{\text {c}}$ Email: lenyaga@Gmail.com

Abstract

The non-negative P_{0} - matrix completion is considered for 5×5 matrices specifying digraphs for $\mathrm{p}=5$, $\mathrm{q}=3$, where p is number of vertices and q is number of arcs by performing zero completion on the matrices. The study establishes that all digraphs for $\mathrm{p}=5, \mathrm{q}=3$ specifying 5×5 partial matrices which are either cycles or acyclic digraphs have non-negative P_{0}-completion.

Keywords: Principal submatrix, partial matrix, matrix completion, $\mathrm{P}_{0}-$ matrix, Nonnegative $\mathrm{P}_{0}-$ matrix

1. Introduction

A matrix A is a rectangular array of numbers or objects arranged in rows and columns. A submatrix of a matrix A is a smaller matrix obtained by deleting a collection of row(s) and / or column(s) from the matrix A. If A is an nxn matrix, for α subset of $\{1,2,----, \mathrm{n}\}$, the principal submatrix $A(\alpha)$ is obtained by deleting all rows and columns that are not in α. A principal minor is the determinant of a leading principal submatrix obtained by deleting the last $\mathrm{n}-\mathrm{k}$ rows and $\mathrm{n}-\mathrm{k}$ columns of the nxn matrix A. for nxn square matrix there are n leading principal minors.

[^0]A partial matrix is a matrix in which some entries are specified while the remaining unspecified entries are free to be chosen [5]. Example $A=\left[\begin{array}{ccc}4 & 2 & x \\ 2 & 1 & y \\ 4 & -1 & 1\end{array}\right]$ is a 3×3 partial matrix with elements in positions $(1,1),(1,2),(2,1),(2,2),(3,1),(3,2),(3,3)$ specified while elements in positions $(1,3),(2,3)$ are unspecified. A fully specified principal submatrix such as $A(1,2)$ of matrix A above has all entries specified. Completion of a partial matrix is a particular choice of values for unspecified entries so that the resulting matrix specifies a certain property.

An nxn matrix has a list of positions given by $\{1,2,------, n\} x\{1,2,------, n\}$. If Q is a subset of this list of positions, then Q is said to be pattern of the nxn matrix. A partial matrix specifies the pattern if its specified entries are those exactly listed in the pattern. For instance the partial matrix A above specifies the pattern $\{(1,1),(1,2),(2,1),(2,2),(3.1),(3,2),(3,3)\}$.

Matrices are of various classes such as positive definite, $\mathrm{P}, \mathrm{P}_{0}, \mathrm{M}_{0}$, nonnegative P_{0} matrices and others. Each of the class specifies certain properties. As stated in[1], for a particular class Π of matrices, a pattern is said to have Π - completion if every partial Π - matrix specifying the pattern can be completed to a Π - matrix. If there exists even one partial Π - matrix specifying the pattern that cannot be completed that pattern is said not to have completion.

A real nxn matrix is called a \mathbf{P}_{0} - matrix if all its principal minors are non-negative. A partial P_{0}-matrix is a partial matrix in which all fully specified sub-matrices are $\mathrm{P}_{0}-$ matrices. A real nxn matrix is nonnegative P_{0} - matrix if all entries are nonnegative and all its principal minors are nonnegative i.e. it's a P_{0} - matrix whose entries are nonnegative. A partial matrix is a partial nonnegative $\mathrm{P}_{0}{ }^{-}$matrix if determinants of all fully specified sub-matrices are nonnegative and all specified entries are nonnegative. A pattern is said to have a nonnegative P_{0} - completion if every partial nonnegative P_{0} matrix specifying the pattern can be completed to a nonnegative P_{0}-matrix. These are well defined in [4].

Graphs and digraphs have been used effectively to study matrix completion problems. For positionally symmetric pattern Q that includes all diagonal positions, the graph of Q (pattern graph) is used to carry out the study. For patterns without positional symmetry, digraphs (directed graphs) are used, as established in [5].

Digraphs assist the study of nonnegative P_{0} - matrix completion since the case considered involve patterns involving 5×5 matrices with all diagonal entries specified and not necessarily for position $\{\mathrm{j}, \mathrm{i}$ $\}$ to be in the pattern if position $\{\mathrm{i}, \mathrm{j}\}$ is in the pattern.

A digraph is ordered pair $\mathrm{D}=(\mathrm{V}, \mathrm{A})$ comprising of a set of vertices together with a set A of directed edges called arcs. The order of a digraph is the number of vertices in the digraph while the size of a digraph is the number of arcs in the digraph. A digraph H is said to be a sub-digraph of D if every vertex of H is also a vertex of D and every arc of H is also an arc of D . [6]

Let D be a digraph, a path that begins and ends at the same vertex is called a cycle. A digraph that does not contain any cycles is called an acyclic digraph. A chord is an arc joining two non-consecutive
vertices of a cycle. A digraph is chordal if any cycle of length >3 has a chord. A subset of a directed graph is called a clique if it contains at least three vertices and for each pair of vertices v_{i} and v_{j} in the subset, both $v_{i} \rightarrow v_{j}$ and $v_{j} \rightarrow v_{i}$ are true. [4]

In many situations it is convenient to permute entries of a partial matrix. A permutation matrix P is obtained by interchanging rows on the identity matrix. The permutation matrix A is then $\mathrm{PAP}^{\mathrm{T}}$. This is represented on the digraph by renumbering the vertices. As a result of the following lemma we are allowed to permute a partial nonnegative P_{0}-matrix and hence renumber digraph vertices as convenient.

Lemma 1.1 [1]: The class of nonnegative P_{0}-matrices is closed under permutation.

Some studies have been done on nonnegative P_{0}-matrix completion. In [4], Hogben established that for nonnegative P_{0}-matrices, patterns of every non-separable strongly connected induced sub-digraph has nonnegative P_{0} - completion. In the same study it is shown that all 3×3 matrices have nonnegative P_{0}-completion prove of which is given in [2]. In [5], Hogben established that a pattern that has nonnegative P_{0}-completion also have nonnegative P - completion. In [2], it is established that a 4 x 4 matrix that includes all diagonal positions has nonnegative P_{0}-completion if and only if its digraph is complete when it has a 4-cycle. Also shown in the study is that any positionally symmetric pattern that includes all diagonal positions and whose graph is an n-cycle has nonnegative P_{0}-completion if and only if $\mathrm{n} \neq 4$.

In next section all possible digraphs with 5 vertices and 3 arcs are considered and 5×5 partial matrices specifying the digraphs extracted. The construction of digraphs will be with the guidance of graphs with five points and three lines as given in [3]

The process of extracting the partial nonnegative P_{0}-matrices will be as follows: A specific entry $a_{i j}$ will be used to represent the corresponding present arc in the digraph, an unspecified entry $x_{i j}$ will represent a corresponding missing arc in the digraph while $d_{i i}$ will specify the diagonal entries. Zero completion method will then be used to find out whether each of the cases have zero completion to nonnegative P_{0}-matrix or not.

Classification of 5×5 matrices specifying digraphs with 5 vertices and 3 arcs.

i) Consider the digraph below:

5

Let $\quad A=\left(\begin{array}{l}d_{11} a_{12} x_{13} x_{14} x_{15} \\ a_{21} d_{22} x_{23} x_{24} x_{25} \\ x_{31} x_{32} d_{33} a_{34} x_{35} \\ x_{41} x_{42} x_{43} d_{44} x_{45} \\ x_{51} x_{52} x_{53} x_{54} d_{55}\end{array}\right)$ be a partial nonnegative P_{0}-matrix representing the digraph above.

Determining the determinants of all the principal minors then setting the unspecified entries to zero, i.e. $x_{13}=0, x_{14}=0, x_{15}=0, x_{23}=0, x_{24}=0, x_{25}=0, x_{31}=0, x_{32}=0, x_{35}=0, x_{41}=0, x_{42}=0, x_{43}=0$, $x_{45}=0, x_{51}=0, x_{52}=0, x_{53}=0, x_{54}=0$. Determinants of the principal sub-matrices will be as follows:-
$\operatorname{Det} A(1,2)=d_{11} d_{22}-a_{12} a_{21} \geq 0$ since $A(1,2)$ is fully specified.

Similarly, Det $A(1,3)$, Det $A(1,4)$, Det $A(1,5)$, Det $A(2,3)$, Det $A(2,4)$, Det $A(2,5)$, Det $A(3,5)$, Det $A(4,5) \geq 0$

Det $A(1,2,3)=d_{11} d_{22} d_{33}-a_{12} a_{21} d_{33}=d_{33}\left(d_{11} d_{22}-a_{12} a_{21}\right) \geq 0$, since $A(1,2)$ is fully specified.

Similarly Det $A(1,2,4)$, Det $A(1,2,5)$, Det $A(1,3,4)$, Det $A(1,3,5)$, Det $A(1,4,5)$, Det $A(2,3,4)$, Det $A(2,3,5), \operatorname{Det} A(2,4,5), \operatorname{Det} A(3,4,5) \geq 0$
$\operatorname{Det} A(1,2,3,4)=d_{11} d_{22} d_{33} d_{44}-a_{12} a_{21} d_{33} d_{44}=d_{33} d_{44}\left(d_{11} d_{22}-a_{12} a_{21}\right) \geq 0$, since $A(1,2)$ is fully specified Similarly, $\operatorname{Det} A(1,2,3,5)$, $\operatorname{Det} A(1,2,4,5)$, $\operatorname{Det} A(1,3,4,5)$, $\operatorname{Det} A(2,3,4,5) \geq 0$

Det $A=d_{11} d_{22} d_{33} d_{44} d_{55}-a_{12} a_{21} d_{33} d_{44} d_{55}=d_{33} d_{44} d_{55}\left(d_{11} d_{22}-a_{12} a_{21}\right) \geq 0$, since $A(1,2)$ is fully specified Hence all principal minors are nonnegative and therefore partial matrix has zero completion into nonnegative P_{0}-matrix. Carrying out similar procedures for the following digraphs similar results will be obtained.

ii) Consider the digraph below:

Let $\quad A=\left(\begin{array}{l}d_{11} a_{12} x_{13} x_{14} x_{15} \\ x_{21} d_{22} a_{23} x_{24} x_{25} \\ x_{31} x_{32} d_{33} a_{34} x_{35} \\ x_{41} x_{42} x_{43} d_{44} x_{45} \\ x_{51} x_{52} x_{53} x_{54} d_{55}\end{array}\right)$ be a partial nonnegative P_{0}-matrix representing the digraph above.
Determining the determinants of all the principal submatrices, then setting the unspecified entries to zero, i.e. $x_{13}=0, x_{14}=0, x_{15}=0, x_{23}=0, x_{24}=0, x_{25}=0, x_{31}=0, x_{32}=0, x_{35}=0, x_{41}=0, \mathrm{x}_{42}=0$, $x_{43}=0, x_{45}=0, x_{51}=0, x_{52}=0, x_{53}=0, x_{54}=0$. Determinants of the principal sub-matrices will be follows:

Det $A(1,2)$, Det $A(1,3)$, Det $A(1,4)$, Det $A(1,5)$, Det $A(2,3)$, Det $A(2,4)$, Det $A(2,5)$, Det $A(3,5)$, Det $A(4,5)$, $\operatorname{Det} A(1,2,3)$, $\operatorname{Det} A(1,2,4)$, $\operatorname{Det} A(1,2,5)$, $\operatorname{Det} A(1,3,4)$, $\operatorname{Det} A(1,3,5)$, $\operatorname{Det} A(1,4,5)$, $\operatorname{Det} A(2,3,4)$, $\operatorname{Det} A(2,3,5)$, Det $A(2,4,5)$, $\operatorname{Det} A(3,4,5)$, $\operatorname{Det} A(1,2,3,4)$, $\operatorname{Det} A(1,2,3,5)$, $\operatorname{Det} A(1,2,4,5)$, $\operatorname{Det} A(1,3,4,5)$, $\operatorname{Det} A(2,3,4,5)$, $\operatorname{Det} A \geq 0$

Hence all principal minors are nonnegative and therefore partial matrix has zero completion into nonnegative P_{0}-matrix.

Carrying out similar procedures to all other acyclic digraphs shown below, similar results will be obtained.

5
(
$5 \bigcirc 4$

iii) Consider the following digraph which is a cycle

$A=\left(\begin{array}{l}d_{11} x_{12} a_{13} x_{14} x_{15} \\ a_{21} d_{22} x_{23} x_{24} x_{25} \\ x_{31} a_{32} d_{33} x_{34} x_{35} \\ x_{41} x_{42} x_{43} d_{44} x_{45} \\ x_{51} x_{52} x_{53} x_{54} d_{55}\end{array}\right)$ be a partial nonnegative P_{0}-matrix representing the digraph above.
Determining the determinants of all the principal minors then setting the unspecified entries to zero, i.e.
$x_{13}=0, x_{14}=0, x_{15}=0, x_{23}=0, x_{24}=0, x_{25}=0, x_{31}=0, x_{32}=0, x_{35}=0, x_{41}=0, \mathrm{x}_{42}=0, x_{43}=0$, $x_{45}=0, x_{51}=0, x_{52}=0, x_{53}=0, x_{54}=0$. Determinants of the principal sub-matrices can be shown as above to be ≥ 0

Hence all principal minors are nonnegative and therefore partial matrix has zero completion into nonnegative P_{0}-matrix.

Conclusion

All the digraphs for 5×5 matrices with 3 arcs which are either cycles or acyclic digraphs have zero completion into nonnegative P_{0}-matrix.

REFERENCES

[1] J. Y. Choi, L. M. Dealba, L. Hogben, A. Maxwell. " P_{0}-matrix completion problem." Electronic journal in linear algebra.Vol9, pp 1-20, 2002.
[2] J. Y. Choi, L. M. Dealba, L. Hogben, B. M. Kivunge, S. K. Nordstrom and M. Schedenhelm. "The nonnegative P_{0}-matrix completion problem." Electronic journal in linear algebra. Vol10, pp46-59, 2003.
[3] F. Harary. Graph Theory. New York: Addison - Wesley publishing Company, 1969.
[4] L. Hogben. "Graph Theoretic Methods for Matrix Completion Problem." Linear Algebra and its applications. Vol328, pp 161-202, 2001.
[5] L. Hogben. "Matrix completion problems for pairs of related classes of matrices." Linear Algebra and its applications. Vol373, pp13-29, 2003.
[6] S. Roman. An introduction to discrete mathematics $2^{\text {nd }}$ edition. Orlando Florida, United States of America: Harcourt Brace Javanourch Publishers, 1989.

[^0]: * Corresponding author. +254723846208

 E-mail address: munyirijuma@gmail.com

