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Abstract 

We have extended the univariate bilognormal distribution to two piece multivariate lognormal 

distribution. The density function of two piece multivariate lognormal distribution is given and the 

maximum likelihood estimates of the parameters when the variance - covariance matrix of two 

component multivariate lognormal distributions are proportional to each other are obtained. Its 

truncated distribution and estimation of parameters are also considered in this paper. 

Keywords: Two piece multivariate lognormal distribution; maximum likelihood estimates; variance - 

covariance matrix.  

1. Introduction

The Statistical theory based on the normal distribution has the advantage that the multivariate methods 

based on it are extensively developed and can be studied in an organized and systematic way. This is 

due not only to the need for such methods because they are of practical use, but also to the fact that 

normal theory is amenable to exact mathematical treatment. The suitable methods of analysis are 

mainly based on standard operations of matrix algebra; the distributions of many statistics involved can 

be obtained exactly or characterized, and in many cases optimum properties of procedures can be 

deduced. Although the bivariate normal distribution has been studied at the beginning of the nineteenth 

century, interest in multivariate distributions remained at a low level until it was stimulated by the work 

of [1] in the last quarter of the century. 
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He did not, himself, introduce new firms of joint distribution, but he developed the idea of correlation 

and regression and focused attention on the need for greater knowledge of possible forms of 

multivariate distribution. [2] enunciated the theory of the multivariate normal distribution as a 

generalization of observed properties of samples. 

We know that log transformation reduces the skewness and kurtosis of the distribution. Tarmast, 

Ghasem has defined multivariate lognormal distribution and its mean and covariance matrix are 

obtained and their estimates are calculated. He has shown that multivariate lognormal distribution can 

be applied in reliability study. 

Similar to two-piece normal distribution, there are many advantages of the two-piece multivariate 

normal (TPMN) distribution over the other distributions those are used to handle asymmetry in data. 

One such advantage is that it can handle a wide range of skewness both positive and negative for more 

than one correlated variables. [3], [4] and [5] have studied some important properties of two-piece 

normal distribution.  

In section 2, we have defined two piece multivariate lognormal (TPMLN) distribution. In section 3, we 

have given m.l.e’s of the parameters. Truncated two piece multivariate lognormal (TTPMLN) 

distribution is defined in section 4 and its m.l.e’s are given in section 5 of this paper. 

2. The density function

The density function of two piece multivariate lognormal (TPMLN) distribution is given by 
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If  V2 is proportional to V1 i.e. V1= V and 2 1, ( 0)V kV k   then the density function (2.1) reduces

to 
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Taking log ,y x  (2.2) can be rewritten as 
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3. Estimation of Parameters 

According to the suggestion of  [6] we define concomitants of multivariate order statistics as follows 
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Where  1 2   denotes summation over all observations less than or equal to (greater than) 
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Differentiating log L  with respect to   and equating it to zero, we get
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Using the value of 
1 1t t   in (3.3),   the value of   can be obtained as
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Differentiating log likelihood function with respect to elements of V and equating it to zero, we get 
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4. The density of its truncated distribution 

The density function of truncated two piece multivariate lognormal (TTPMLN) distribution for 

2 1V KV  is 
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5. Estimation of parameters of TTPMLN distribution 
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where  1 2   denotes summation over all observations lying between A  and   (lying between

  and B ). 

Differentiating logL with respect to   and equating it to zero, we get 
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Applying the same procedure as TPMLN distribution, we can choose some 1t t such that 
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Differentiating log likelihood function with respect to element of V and equating it to zero, we get 
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where  1 2   denotes summation over all observations lying between A  and   (lying between

  and B ) which are different from those in equation 3.5. 
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