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Abstract 

The Glojeh mineralization district is part of Tarom-Hashtjin metallogenic province. Igneous rocks in 

Glojeh district include intrusive rocks (granodiorite, granite and quartzmonzonite), and volcanic and 

sub-volcanic rocks (rhyodacite, rhyolite, andesitic basalt, andesitic, tachyandesite, trachydacite, basalt, 

tuff and rhyolitic tuff), which are typically of high-K igneous rocks transitional to shoshonites. 

Rhyodacite are host rocks of North Glojeh veins. Alteration is consisting of propylilitization, 

sericitization, argillization and silicification. Hydrothermal alteration zones have well-developed and 

zoned, that extends ≈ 30 meters into the host rocks. Mass balance calculations indicate that Al, Zr, Ti, 

Y, Nb, and HREE were immobile elements during alteration. Mineralization occur in four stages: 1) 

pyrite-magnetite-quartz assemblage; 2) As-Sb-Fe-Au-Cu assemblages; 3) Pb-Zn-Cu-Ag assemblages; 

and 4) hematite-goethite assemblages associated by precious metals. The veins longitudinal sections 

show clearly that base metals occur at the deepest levels, whereas precious metals occur at higher 

elevations with respect to base metals. Silver occur overlapping and slightly above the base metals 

zone, generally above the zone rich in base metals and beneath of gold zone. This observation 

contradicts the typical zoning pattern caused by boiling in epithermal veins. The North Glojeh deposit 

is a typical of epithermal deposit, with features of either high-sulfidation (stage 1 and 2) or 

intermediate-sulfidation (stage 3) types of epithermal deposits. Also stage 4 (oxidation zone) have 

features of low sulfidation type.  
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1. Introduction 

Epithermal deposits form a spectrum with two end members; low and high sulfidation, that high 

sulfidation deposits are generally proximal with respect to the intrusion (probably porphyry deposits), 

whereas low sulfidation deposits occur generally distal [1]. Intermediate sulfidation deposits form part 

of the spectrum and their genesis is complex due to the involvement of fluids with meteoric or 

magmatic origin during their formation and due to fluid evolution. Epithermal-porphyry in world 

distributed in three main metallogenic provinces includes Circum Pasific, Alpine-Himalayan orogenic 

system and Paleo-Central Asian (Fig. 1) [2]. Subduction of the Paleo- and Neo-Tethys beneath the 

Eurasian and Iranian plates, respectively, caused the formation of the Caucasus magmatic arc in the 

north and the Sanandaj–Sirjan Magmatic Zone, the Urumieh-Dokhtar Zone, the Alborz Magmatic Belt, 

the Zagros fold-and-thrust belt in the south. Epithermal gold, base metal and porphyry deposits in Iran 

are mainly present in two magmatic belt along Paleo- and Neo-Tethys oceans includes Urmieh-Dokhtar 

(NW-trending) and Alborz (EW-trending) Magmatic Belt (Fig. 2), that are part of Alpine-Himalayan 

orogenic system [3, 4]. The Alborz Magmatic Belt is situated in northern Iran with an E-W orientation, 

and subdivided into eastern and western parts. Western portion merges with another Tertiary magmatic 

belt, the Urmieh-Dokhtar zone, which runs parallel to the main northwest-trending Zagros thrust [5, 6, 7].  

Glojeh district is situated approximately 30 km (18.6 miles) north of the Zanjan town, and is located in 

Tarom-Hashtjin metallogenic province (THMP). Structurally, THMP is located in merge between 

western Alborz Magmatic Belt and Urmieh- Dokhtar Zone (Fig. 2). The THMP have several 

mineralization of epithermal-porphyry and other type of ore deposits (Fig. 3). Glojeh district is one of 

the several epigenetic epithermal deposits in the THMP, and consists of a set of veins bearing 

polymetallic (Pb–Zn–Cu-Ag-Au) sulphides and recoverable amounts of Bi and Cd in North Glojeh and 

South Glojeh veins. This paper describes and reviews the principal geological characteristics, 

mineralization, alteration and geochemistry of epithermal gold deposits in North Glojeh.  

 

Fig. 1. Distribution of epithermal and porphyry provinces of the world [after 2], Circum Pasific (left), 
Alpine-Himalayan orogenic system (mid) and Paleo-Central Asian (right). 
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Fig. 2. Tethyan-Eurasian metallogenic belt [after 3, 4], epithermal-porphyry mineralization in Iran is 
part of Alpine-Himalayan orogenic system. Location of THMP show in figure (Fig. 3).  

 

Fig. 3. Geological map of Tarom- Hashtjin metallogenic belt (THMP) and distribution of major 
epithermal ore deposits, Glojeh ore deposit located in mid of THMP. 

2. Material and methods 

Fifty six polished and thin-polished sections were studied by optical microscopy and FEI Quanta 650 

FEG-ESEM and Zeiss 1450 vp SEM, at Leeds University and Iranian mineral processing research 

center (IMPRC), respectively. Electron microprobe analysis (EPMA) of polished and thin-polished 

sections carried out using Cameca SX100 at IMPRC. Operating conditions were: 20 kV and 20 nA, 

with a beam diameter 1-5 μm. Over 320 chemical assays from channel and drill core samples from 

North Glojeh veins were used in this study. The chemical analyses were performed in the chemistry 

laboratory of the Amdel Australia and Zarkavan Lab of Iran. Gold analyses are performed by fire assay 

and Ag, Pb, Zn, Cu, As, Sb are analyzed by inductively coupled plasma mass spectrometry (ICP-MS). 

Approximate detection limits for the elements are: Au=0.005 ppm, Ag=0.2 ppm, Pb, Zn and Cu=0.5 
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ppm. Interpolation of data and creation of longitudinal sections for the veins was done using the 

Kriging interpolation function built in the Surfer software, version 9. The basic statistics, minimum, 

maximum, mean and standard deviation were calculated for every vein by SPSS software, version 16. 

3. Regional geology 

The Glojeh ore mineralization is located in NW of Iran (Fig. 2), and is one of several epithermal ore 

deposits in THMP (Fig. 3). The THMP with 70 to 150 km width, 300 Km length and NW orientation 

hosts numbers of precious metals and polymetallic epithermal deposits associated with the Eocene to 

Oligocene volcano-plutonism. Regionally, the THMP comprises four tectonostratigraphic units (Fig. 

3), namely: 1) Precambrian metamorphic basement, 2) Cambrian and Permian metamorphic rocks, 3) 

Jurassic to Cretaceous limestone and sandstone, and 4) Eocene to Oligocene volcano-plutonic rocks. 

Precambrian metamorphic rocks, are undifferentiated, and consist of schist, phyllite, and felsic rocks. 

Cambrian strata include dolomitic marble and phyllite, discordantly overlying the Precambrian 

metamorphic rocks. Permian low-grade metamorphic rocks discordantly overlie the Cambrian strata. 

The Permian strata, in turn, are discordantly overlain by Mesozoic rocks, consisting of, sandstone, 

limestone, and siltstone. The Cenozoic volcanic rocks, extensively distributed throughout the whole 

belt, comprise a wide spectrum of rock types, including trachybasalt, trachyandesite, andesite, 

andesitic-basalt, rhyodacite, rhyolite lava flows and tuff. Volcanic sequences in numerous places have 

been intruded by batholiths and smaller intrusions of granodiorite, quartzmonzonite and granite. 

The major geological units of the Glojeh mineral district (Fig. 4) consist of three main lithologic units 

[8]. The first unit is characterized by pervasively well layered lithic tuff unit, and composed mostly of 

quartz phenocrysts, plagioclase and ubiquitous flattened fragments. The second unit is marked by basic 

tuff with interlayered andesitic basalt rocks. Basic tuffs and andesitic basalt volcanic rocks are exposed 

predominately in the southern district, whereas lithic tuffs are more abundant in northern part of the 

district. Andesitic basalts of dark yellow and brown are composed mostly of andesine and hornblende 

and biotite. Plagioclase occurs as phenocrysts. The third unit is rhyodacite unit, which only occur in the 

central and western segment of the Glojeh district (Fig. 4). Rhyodacites are characterized by 

phenocrysts of largely clay altered plagioclase, and smaller phenocrysts of variably altered feldspar, 

quartz and biotite, and various amounts of quartz, in a matrix rich in alkali feldspar. Several 

subvolcanic trachybasalt dykes characterized by quartz, biotite and plagioclase phenocrysts which 

intruded in lithic tuff unit. Two quartz monzonite, granite and granodiorite stock, located in the central 

(Goljin) and northern (Varmarziar) part of the district (Fig. 4), and younger rhyolite dome intrude in 

the rhyodacites volcanic section located in the west of district. The rhyolite domes are contains 

phenocrysts of plagioclase, quartz, and biotite. The intrusion comprises of plagioclase (30–45% by 

volume), quartz (25–30%), biotite (10–15%), alkali feldspar (8–10%), and hornblende (2%). Alkali 

feldspar with some perthitic exsolution was clearly a late phase to crystallise. Plagioclase is euhedral 

andesine. The N Glojeh veins are hosted along most of its length by the rhyodacite unit, except in its 

100 m eastern extremity, where it enters in lithic and tuff unit. 
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Fig. 4. Geological map of Glojeh area, (After 1/100000 geological map of Hashtjin [8] with revised). 

4. Deposit geology 

4.1. Host rocks and geological setting 

Outcrops in the North Glojeh deposit from the oldest to youngest, comprises of; 1) lithic tuff with 

andesite interbeded; 2) rhyodacite with tuff interbeded, and; 3) lithic tuffs (Fig. 5). Mineralization in 

the North Glojeh deposit is mainly hosted by rhyodacite. Rhyodacite is widespread in east of disrtict, 

and is black gray in altered surface and light gray in fresh surface (Fig. 6a). Several rhyolite dome 

intruded in rhyodacite unit (Fig. 6b). Rhyodacite consists predominantly of large phenocryst of altered 

plagioclase, feldspar and minor quartz in a fine-grained groundmass. Plagioclases are andesine and 

oligoclase, that replaced by kaolinite during alteration (Figs. 6c and 6d). Whole-rock major element 

analyses of 14 samples from volcanic and subvolcanic rocks were analyzed by Philips PW2404WD- 

XRF at the Kharazmi University in order to depict petrochemical characteristics and tectonic setting. 

The trace and rare earth elements analysis were carried out in the ACME laboratories, Vancouver, 

Canada (Table 1) using ICP-MS (Group 1T-MS) technique. According to the classification of [9], the 

volcanic rocks in Glojeh district fall into the fields of rhyodacite, rhyolite, andesitic basalt, andesitic, 

basalt, tuff and rhyolitic tuff (Fig. 7a). The rocks (Fig. 7b) are characterized by high K2O contents (up 
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to 5.5 Wt. %), high average K2O/Na2O ratios (0.6), and high average Ce/Yb ratios (17.8), which are 

typical of high-K igneous rocks of transitional to shoshonitic series [10, 11]. 

 

Fig. 5. Geological map of North Glojeh veins. 

 

Fig. 6. Photographs and photomicrographs of representative rock types at North Glojeh, a) Rhyodacite 

rock that is host mineralization in North Glojeh, b) Rhyolite domes intrude in the rhyodacite volcanic 

section, c and d) K-feldspar and plagioclase phenocrysts replaced by kaolinite, calcite and chlorite. 

Abbreviations: Kf-K-feldspar, Pl-plagioclase. 

4.2. Alteration and mass balance calculations 

Hydrothermal alteration zones have well-developed and zoned around North Glojeh veins and extends 

≈ 30 meters into the host rocks, and are similar in both area. Laterally outward from the ore bodies, 

there are four alteration assemblages: (1) a silicic zone with massive and vuggy silica, and 

disseminated pyrite; (2) a low-intermediate intensity quartz-sericite-pyrite (QSP); (3) an argillic zones 

with quartz-kaolinite-montmorionite-illit-chlorite-pyrite and minor alunite; and (4) a propylitic zone 

consist of quartz-chlorite-calcite-epidote-sericite and albite. 

Silicification is represented by the massive and vuggy silica bodies of crustiform quartz (Fig. 8b), 

anatase, Chalcedony and minor pyrite. Silicic alteration grades outward into sericite alteration, which is 

more widespread at depth. In the North Glojeh vein, the sericitic (QSP) alteration usually consists of 
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sericite (muscovite), quartz, and pyrite with minor calcite (Fig. 8f). These alteration products can be 

found as much as 5 m beneath the argillic zone, and more developed in depth rather than surface.  

Argillic alteration (Fig. 8d) led to the crystalisation of quartz-kaolinite-montmorionite-illit-chlorite-

pyrite and alunite and the bleaching of the wall rock. In general, argillisation is marked by the complete 

replacement of plagioclase and K-feldspar by these clay minerals. Argillic zone initiates with kaolinite-

quartz and alunite (advanced argillic) (Fig. 8a), and is associated with sericite zone which host Cu-

sulfide mieralization, followed by montmorionite-illit and especially chlorite associated with base 

metals (stage 3B) (Fig. 8c). Propylitic alteration is the most widespread in the area and essentially 

consists of carbonate, epidote, chlorite, and albite (Fig. 8e). Propylitized rocks exist immediately 

adjacent to the veins where other alteration types are not present. Wherever other alteration 

assemblages are present, the propylitic assemblage is farther from the vein.  

 
Fig. 7. Geochemistry of the volcanic and intrusion rocks. a) (Na2O+K2O) versus SiO2, b) K2O versus 

SiO2 diagram . Yellow square (volcanic rocks), red square (intrusion rocks) and pink square 

(subvolcanic rocks). 

The mass balance calculations were carried out using isocon method described by [12]. Twenty five 

sample of altered and fresh volcanic rocks analysis by ICP-MS and ICP-OES in Acme lab (Canada) 

and Kharazmi University, respectively. In this method the element mobility during alteration was 

quantified by plotting immobile elements (Al, Zr, Ti, Y, Nb, and HREE) in isocon plots. In argillic 

zone, HREE were immobile during alteration and plot close to a line of constant mass. Mass gains are 

apparent in Fe2O3, TiO2, Th, Hf, As, Ni and V whereas mass losses in Na2O, CaO, K2O, MgO, Pb, 

Zn, Cu and Sb occur. In advanced argillic alteration, mass losses in REE, Nb, Pb, Sr, and Zr occur. 

This zone displays mass gains in Al2O3, As, Co, Ni, Hf and Nd. In sericitic (QSP) alteration, K2O, 

Na2O, MgO, CaO and LREE are enriched, whereas Fe2O3, and minor elements are depleted. In 

propylitic alteration, MgO and Al2O3 are enriched, whereas Fe2O3, K2O, CaO, Na2O, REE and minor 

elements are depleted (Fig. 9). 

4.3. Mineralization and paragenetic sequence 

There are two main veins (No. 1 and No. 2), and several veinlet, which strike E-W and generally dip 

steeply to the west in North Glojeh. The North Glojeh veins have length of greater than 1.5 km and a 
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width ranges from 0.1 to greater than 4 m (averages 2.5 m). Ore minerals textures are massive (up to 30 

vol %), disseminated, replacement, banded (open space filling), and stockwork. Description and 

interpretation of cross-cutting relations between ore minerals were used to describe the vein 

stratigraphy. Mineralization at North Glojeh veins has been divided into four stages: Early stage (1) 

Pyrite-magnetite-quartz assemblage; Main stages (2) As-Sb-Fe-Cu-S assemblages; (3) Pb-Zn-Cu-Ag 

assemblages; and Late stage (4) Hematite-goethite-Ag-Bi-Au-Pb-S assemblages (Fig. 10).  

Stage 1 is characterized by the deposition of vuggy and massive silica bodies contain massive to 

disseminated pyrite and magnetite. Pyrite occurs as euhedral and sometimes corroded and replaced by 

fine grained chalcopyrite, sphalerite and galena in later stages (Fig. 11a). Magnetite is anhedral and 

shows intergrowth with pyrite, and its composition is homogeneous. Stage 2 is characterized by the 

deposition of Cu-As-Sb-Fe-S assemblages as breccias and replacement bodies. Bornite associated with 

chalcocite occurs mostly as fracture fillings within chalcopyrite grains. In some places, it is present as 

subhedral to anhedral grains adjacent to chalcopyrite. Enargite associated with famatinite, chalcocite, 

covellit, bournonite and pyrite deposited around chalcopyrite (Fig. 11b). Hematite occurs as tabular 

shape, and contains gold grains (Fig. 11c), whereas sulfide minerals in this stage are without any trace 

of native gold. Pyrite is fractured and replaced by iron hydroxides, and in comparison with early stage 

pyrite, is enriched in arsenic (1.0 wt. %). The low-temperature polymorph of Cu3AsS4, luzonite, has 

not been observed in veins. Medium grained quartz in associated with fluorite is the major gangue in 

stage2. Stage 3 is subdivided into three sub-stages, and characterized by Pb-Zn (Cu±Ag) sulfides 

mineralization. Sub-stage 3A is characterized by the deposition of alternating veins, as symmetrical 

comb type texture, which initiated by deposition of coarse-grained quartz and fluorite, followed by 

coarse-grained sphalerite-galena and chalcopyrite deposited as intergrowth or inclusions mutually. 

Finally calcite, quartz and sericite deposited in center of veins bands. Sphalerite occurs mostly as 

subhedral to anhedral crystals adjacent to galena and chalcopyrite (Fig. 11d), and also as micro 

inclusions in galena and chalcopyrite crystals grains, and is characterized by green, white, honey 

yellow and brown internal reflections under crossed nicols. The iron content of sphalerite is generally 

low (0.4-1.0 wt. % and mean of 0.75wt. %), except in sphalerite with ‘‘chalcopyrite disease’’ texture 

(DIS-ccp) mainly formed in deeper levels [13, 14, 15], showing iron content of up to 3.1 wt. %. 

Chalcopyrite is associated with galena and sphalerite, and is also formed as inclusions in sphalerite and 

galena (Fig. 11e). Glena is mostly associated with sphalerite and chalcopyrite. 

Sub-stage 3B is characterized by deposition of fine quartz; galena and sphalerite vein and veinlets 

associated with sulfosalts which cross cut the sulfides in the sub-stage 3A. Minerals such as zincian-

tetrahedrite, argentinian-tetrahedrite, tetrahedrite, chalcostibite (CuSbS2), seligmanite, tenantite and 

argentite are major inclusions in galena (Fig. 11f). Greenockite (Fig. 11g) and two phases of Pb-Zn-Cd 

solid solutions were detected by electron microprobe in shallower levels as inclusions in galena. This 

sub-stage has highest silver content in Glojeh veins (200 g/t), and content of Se in this silver bearing 

minerals is very low, probably reflects a relatively reduced environment consistent with intermediate 

sulfidation state [16].  
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Fig. 8. Photomicrographs of alteration types related with North Glojeh vein mineralization: a) 

Subhedral alunite in advanced argilic zone close to the veins and associated by mineralization in stage; 

b) Crustiform quartz in silicic zone; c) Argilic zone rich in chlorite associated by Pb-Zn-Ag 

mineralization in stage 3B; d) argilic zone; e) Propylitic zone consist of chlorite, epidote, albite and 

calcite and f) Quartz, pyrite, fine grain muscovite and minor calcite in sericitic alteration. 

Abbreviations: (Qz) quartz, (Pl) plagioclase, (Py) pyrite, (Mus) muscovite, (Alu) alunite and (Chl) 

chlorite. 

 

Fig. 9. Isocon diagrams for alteration zones calculated according to [12]. 
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Table 1. Sample analyses from the North Glojeh veins. Major oxides were analyzed by XRF at the 

Kharazmi University (Iran), and other elements were analyzed by ICP-MS at ACME Labs (Canada). 

G41 

Gls-BH3-
H14 

G40 

Go-Dy-08 

G38 

Gls-Ts-
H15b 

G37 

Gls-Ts-
H15 

G36 

Gl1-
20-01 

G35 

Gl1-20 

G34 

Go-Dy-08 

G33 

Go-
Dy-07 

G32 

Go-gr-11 

G31 

Go-gr-10 

G30 

Va-gr-15 

G29 

Gl1-
HR-09 

G28 

Go-gr-12 

G27 

Va-gr-19 
sample 

52.15 52.05 50.41 55.62 55.24 69.76 62.09 65.57 60.92 70.75 70.47 70.47 68.70 68.47 
SiO2 

(wt%) 

0.95 0.98 1.02 0.79 0.17 0.32 0.77 0.73 0.93 0.45 0.45 0.29 0.57 0.55 TiO2 

16.15 16.00 14.20 15.30 7.00 10.80 14.80 14.68 14.40 11.55 12.50 11.60 14.28 14.30 Al2O3 

10.20 8.30 9.50 7.50 28.00 3.90 5.60 5.10 7.50 4.00 3.10 3.00 3.20 2.86 
Fe2O3 
(tot) 

0.62 0.24 0.48 0.49 0.06 0.14 0.24 0.18 0.24 0.10 0.05 0.08 0.08 0.05 MnO 

4.90 2.10 5.15 2.15 0.27 0.76 1.44 0.99 2.13 0.75 0.35 0.43 0.83 0.78 MgO 

0.70 5.80 8.68 8.60 3.50 0.28 4.45 1.60 5.40 1.95 1.80 4.40 1.60 2.00 CaO 

0.16 4.00 1.21 0.06 0.19 0.25 3.60 3.50 3.82 2.80 3.40 1.13 3.40 3.80 Na2O 

4.20 3.80 4.10 3.15 3.10 6.35 4.00 4.25 3.80 5.08 5.45 3.80 5.10 5.12 K2O 

0.29 0.32 0.30 0.26 0.06 0.04 0.32 0.24 0.06 0.12 0.06 0.07 0.13 0.14 P2O5 

9.60 0.40 3.22 5.30 1.41 5.60 1.25 2.16 0.80 2.09 0.50 2.20 1.20 1.17 LOI 

99.92 99.99 98.27 98.92 99.00 98.60 98.56 99.00 100.00 99.00 98.13 98.47 99.09 99.17 Total 

              Ppm 

<0.1 <0.1 <0.1 <0.1 1.0 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.9 <0.1 <0.1 Au 

2931.0 57.0 135.0 543.0 5175.0 4233.0 70.0 219.0 37.0 130.0 69.0 8807.0 <20.0 <20.0 Ag 

24.4 5.0 74.5 144.6 448.8 36.3 7.8 36.1 5.6 3.4 9.6 54.0 4.0 7.70 As 

1143.0 724.0 1033.0 319.0 590.0 778.0 739.0 925.0 689.0 470.0 201.0 544.0 368.0 424.0 Ba 

0.7 <0.04 0.1 0.2 8.7 1.0 <0.04 0.1 <0.04 0.05 0.1 13.9 <0.04 <0.04 Bi 

35.2 19.9 29.0 25.7 12.4 10.7 10.1 8.5 19.7 4.7 2.7 13.5 5.7 4.5 Co 

63.0 28.0 88.0 53.0 38.0 55.0 40.0 24.0 21.0 45.0 54.0 55.0 41.0 37.0 Cr 

30.3 9.7 36.2 21.8 1.8 2.1 3.5 2.8 8.6 2.8 3.9 2.5 3.1 3.0 Ni 

9.0 12.1 12.2 8.6 7.2 17.3 17.1 17.8 12.6 31.2 47.8 7.2 42.8 41.0 Nb 

136.2 95.7 108.8 153.3 106.3 202.1 109.3 209.3 62.1 266.5 320.5 124.7 288.7 248.3 Rb 

11.9 1.4 6.3 18.9 49.8 15.5 0.9 5.8 1.2 0.6 2.0 53.7 0.8 0.6 Sb 

33.1 23.7 28.1 24.2 6.4 2.4 9.2 9.6 18.1 4.7 3.6 4.1 6.2 5.7 Sc 

1.1 1.7 1.6 1.3 1.0 2.8 2.4 2.7 1.6 1.6 2.4 0.7 2.9 2.2 Sn 

96.0 468.0 221.0 83.0 44.0 52.0 398.0 302.0 424.0 213.0 117.0 76.0 258.0 299.0 Sr 

4.1 8.6 6.4 4.9 3.2 10.7 7.3 9.0 4.9 31.7 45.5 4.2 40.2 33.3 Th 

66.2 9.3 84.6 85.0 27.8 82.7 13.5 194.6 12.0 12.2 7.8 43.6 12.9 17.9 Zr 
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2.0 2.0 2.0 2.0 8.0 2.0 3.0 1.0 2.0 4.0 6.0 6.0 5.0 5.0 Be 

1.7 1.7 1.9 2.4 1.0 3.0 1.9 2.5 1.0 6.8 9.2 1.8 7.0 4.5 U 

1558.1 65.0 279.7 342.7 3130.9 2968.6 108.1 122.0 97.5 48.2 47.8 3855.0 40.0 32.0 Zn 

68.3 19.1 216.3 733.7 4156.2 308.6 27.7 10.0 19.4 25.0 30.0 1269.6 23.8 23.0 Pb 

276.0 187.0 224.0 221.0 49.0 21.0 102.0 75.0 176.0 32.0 12.0 37.0 39.0 30.0 V 

22.5 28.4 24.5 20.5 23.7 14.9 21.6 23.2 22.2 23.9 24.1 7.2 29.6 24.9 Y 

105.7 15.2 44.0 138.2 769.0 167.0 33.3 4.0 39.1 27.7 26.0 309.1 47.9 25.3 Cu 

4828.0 1879.0 3703.0 3791.0 459.0 1097.0 1859.0 1420.0 1836.0 766.0 364.0 582.0 648.0 398.0 Mn 

0.8 1.1 1.5 4.9 3.9 0.8 1.2 1.0 0.9 0.8 1.0 1.1 3.2 1.5 Mo 

13.3 0.1 0.7 3.0 15.6 3.0 0.3 0.1 0.2 0.1 0.04 1.4 0.03 0.02 Cd 

1.3 0.7 2.1 2.8 54.9 4.2 1.3 2.1 1.1 2.0 2.1 8.1 7.3 2.1 W 

20.3 26.5 31.1 24.0 19.8 18.9 23.7 27.6 17.4 40.0 47.8 14.0 49.7 45.0 La 

44.3 55.8 62.2 42.8 32.9 39.3 50.3 58.6 39.1 76.7 93.5 28.0 98.7 88.0 Ce 

24.9 26.4 30.2 21.3 19.1 16.6 22.8 26.1 19.9 28.4 32.9 11.7 38.4 34.1 Nd 

5.5 5.3 6.2 4.4 4.1 3.6 4.6 5.4 4.7 5.2 5.6 2.1 7.3 6.2 Sm 

1.2 1.4 1.4 1.0 0.9 0.6 1.1 1.1 1.1 0.6 0.6 0.4 0.8 0.9 Eu 

2.1 0.4 2.8 2.5 0.8 2.6 0.4 5.2 0.5 0.5 0.4 1.3 0.5 0.7 Hf 

0.2 0.4 0.3 0.2 0.2 0.3 0.4 0.4 0.4 0.4 0.4 0.1 0.5 0.4 Lu 

5.9 6.4 7.5 5.1 4.9 4.6 6.0 6.7 4.8 8.2 9.5 3.3 10.8 9.7 Pr 

4.8 5.2 5.5 4.7 4.9 3.0 4.4 4.7 4.8 4.5 4.5 1.4 5.6 5.1 Gd 

2.0 2.9 2.3 1.9 1.7 1.8 2.2 2.7 2.4 2.8 3.0 1.0 3.3 3.0 Yb 

2.3 3.0 2.5 2.2 2.2 1.7 2.4 2.6 2.6 2.6 2.8 0.8 3.5 2.9 Er 

0.7 0.9 0.9 0.7 0.8 0.5 0.7 0.7 0.8 0.8 0.8 0.2 1.0 0.8 Tb 

3.0 2.0 1.0 3.0 5.0 3.0 4.5 4.3 4.4 4.5 4.4 1.2 5.7 4.6 Dy 

4.0 4.8 4.5 3.5 4.6 0.6 0.9 0.9 0.9 0.9 1.0 0.2 1.1 0.9 Ho 

0.3 0.5 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.1 0.5 0.4 Tm 

35.0 18.6 40.2 33.1 55.6 33.8 11.8 57.8 20.6 14.9 26.5 58.9 10.8 20.1 Li 

0.6 0.9 0.8 0.5 0.5 1.2 1.1 1.2 0.8 2.1 3.2 0.5 2.9 2.6 Ta 

6.7 3.4 8.6 10.9 9.6 4.1 2.4 4.4 3.3 6.4 10.3 3.9 12.3 8.7 Cs 
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Fig. 10. Paragenetic sequence of ore and gangue minerals of North Glojeh mineralization. 

Abbreviations: (Bo) bornite, (Cc) chalcocite, (Co) covellit, (Bu) bournonite, (Fm) famatinite, (Qz) 

quartz, (Ccp) chalcopyrite, (Py) pyrite, (Sph) sphalerite, (Ga) galena, (Fl) fluorite, (Cl) calcite, (Chl) 

chlorite, (Hm) hematite, (Au) native gold, (Ar) argentite, (Ag) native silver, (Zn-Td) zincian-

tetrahedrite, (Gk) Greenockite, (Pb-Zn-Cd-S) unnamed mineral, (Ma) marrite, (Gb) galenobismuthite, 

(Pl) polybasite, (Me) meneghinite, (Bi) bismotinite, (Mt) matildite, (Ak) aikinite, (El) electrum and 

Tenantite (Tn). 

A submicrometric intergrowth of native silver on argentite was detected during electron-microprobe 

analyses. Quartz and chlorite are main gangue minerals in this sub-stage. Sub-stage 3C is characterized 

by the deposition of tiny veinlet of galena, sphalerite, Mn-bearing silicate and carbonates in association 

with quartz. 

Galena and sphalerite are major sulfides in this sub-stage. Mn-bearing silicates are rhodonite (MnSiO3) 

and bustamite (CaMnSiO3) and Mn-carbonates, rhodocrosite (Mn [CO3]2) in associated with quartz 

and calcite are main gangue minerals. Stage 4 is characterized by oxidation and deposition of precious 

metals in quartz vein in association with dark hematite-goethite as vugs infilling (open space filling 

texture) and subdivided into two sub-stages. Sub-stage 4A is characterized by a wide variety of 

precious and sulfosalt minerals, which don't show distinct paragenetic sequence. By decreasing 
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abundance, these are: matildite, galenobismuthinite, Au–Ag alloy, native silver, native gold, 

meneghinite, polybasite, marrite and aikinite (Figs. 11h, k). These minerals are abundant as inclusions 

in hematite. Sub-stage 4B is characterized by deposition of hematite and goethite in upper levels 

without any mineral inclusions. The relative volumes of hematite–goethite, and their Au and Ag 

contents, confirm that hematite–goethite precipitation controlled the main Au-fixing event in the North 

Glojeh deposit in its ultimate form. However, the Au/Ag ratio for this assemblage, ~0.50, is almost 

three times more than of the average, ~0.16. This implies that Stage 4 oxidation involved 

remobilization and reprecipitation of metals such as Au-Ag-Bi-Pb, which originally introduced in Stage 

2 and 3. Au–Ag alloy occurs as inclusions in hematite, with crystal size of 10 up to 60 micron. Native 

gold (up to 15 micron) occurs as free grain in grey quartz and as inclusions in hematite. The bismuth 

minerals in North Glojeh are represented by matildite, native bismuth, galenobismuthinite and aikinite. 

Polybasite is also a silver-carrier mineral in North Glojeh mineralization. It occurs with meneghinite as 

small (up to 4 μm) inclusions in hematite. Quartz, calcite and chlorite are major gangue in stage 4.  

5. Geochemistry 

The data used in this study is in units of parts per million (ppm) for Au, Ag, As and Sb and in percent 

(%) for Pb, Zn, and Cu. Table 2, summarizes the basic statistics of the precious and base metal assay 

data. The average values for Au concentrations of the North Glojeh veins is 2.1 ppm. The average 

Pb+Zn values for veins is 2.0 percent. The Cu values are generally low and erratic and occur at deeper 

levels. The average Cu values in the two veins that have copper assays in the data base, range from 

0.00 to 0.9 percent. Correlation matrices were calculated for the assay data of every vein separately 

(Table 3). The calculations show that Zn and Pb have the highest correlation (0.9). Also Pb have the 

highest correlation with Ag (0.9). The high correlation between Ag and Pb supports the observation 

that Ag sulfosalts in Galena (stage 3B). The correlation between Ag and Cu is low (0.4), that suggests 

silver and copper do not coexist. The correlation between Au and Ag (0.7) is high, as well as the 

correlation between Au and As (0.6), which suggests that the distribution of Au within the vein match 

exactly either the distribution of Ag and As. In order to illustrate the distribution of the elements in the 

veins, we prepared longitudinal sections for the two veins using the chemical assays and their 

corresponding “x” (easting) and “y” (elevation) coordinates. Longitudinal sections of Ag/Pb, Au/Ag, 

Pb+Zn and Cu+As equivalent (eq.) were plotted for the North Glojeh veins (Fig. 12). The longitudinal 

sections of the veins show that Pb, Zn and especially Cu+As are concentrated at depth and that the 

precious metals occur at shallow elevations, above the base metals zones. Additionally, the ore bands 

defined by Ag/Pb ratios value occur between the base metals zone and a band defined by high Au/Ag 

ratios at shallower levels.  
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Fig. 11. Reflected light, SEM and EPMA photomicrographs showing replacement textures and ore 

minerals relationships: a) Pyrite replaced by chalcopyrite, sphalerite and galena; b). Cu sulfide minerals 

in stages 2; c) native gold in stage 2; d and e) Sphalerite and galena in sub-stage 3A; f) Tetrahedrite 

inclusion in galena (sub-stage 3B); g) greenockite (Gr) as inclusion in galena associated with sphalerite 

in sub-stage 3B and h and k) gold and Bi bearing mineral associated by hematite in sub-stage 4A. For 

abbreviation see Fig. 10. 

 

Table 2. Summary table showing basic statistics for the North Glojeh veins 

 

 

 

 

 

 
 
 
 
N 
Glojeh 
(N=320) 

 Minimum Maximum Mean Std. Deviation 
Au (ppm) 0.03 40.5 2.1 165.97 
Ag (ppm) 0.32 420 18 145.8 
As (ppm) 9.7 1719 215 301.2 
Sb (ppm) 0.9 186 20 270.2 
Cu (%) 00 0.9 0.05 2000.12 
Pb (%) 00 5 0.7 1958.03 
Zn (%) 0.1 13 1.3 2000.1 

492 
 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2014) Volume 15, No  1, pp 479-497 

Table 3. Correlation matrices for North Glojeh veins. 

N Glojeh 
 Au Ag Pb Zn Cu As Sb Cd 
Au 1.0        
Ag 0.7 1.0       
Pb 0.4 0.9 1.0      
Zn 0.3 0.5 0.9 1.0     
Cu 0.4 0.4 0.5 0.3 1.0    
As 0.6 0.3 0.5 0.4 0.7 1.0   
Sb 0.5 0.6 0.5 0.4 0.3 0.4 1.0  
Cd 0.3 0.6 0.5 0.8 0.0 0.1 0.0 1.0 

 

 

Fig. 12. Longitudinal sections of North Glojeh veins. Ag/Pb ratios showing the distribution of silver 

with respect to lead; Au/Ag ratios showing the distribution of gold with respect to silver; Cu+As and 

Pb+Zn. Elevation in meters above sea level (m.a.s.l.) and distance is in meters, the numbers represent 

the east coordinate in UTM. 
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6. Discussion 

6.1. Geochemical Zoning 

Variations in metal concentrations and metal ratios at the scale of individual veins in vertical 

longitudinal sections in North Glojeh occur. These variations are evidence of geochemical zoning. The 

longitudinal sections show clearly that Ag/Pb occurs at higher elevations and associated with base 

metals, which is supported by the observation that sub-stage 3B occur generally above the zone rich in 

base metals (sub-stage 3A). The base metals occur at the deepest levels, whereas gold and especially 

Au/Ag ratios seems to occur in shallower levels. This observation contradicts the typical zoning pattern 

caused by boiling in epithermal veins, where base metals occur at depth, silver at intermediate depth 

and gold at shallow depth [17, 18, 19, 20]. In the Purisima-Colon vein system, Pachuca, Mexico, the 

base metals are concentrated at depth, and there is an intermediate-depth zone with high silver grades 

overlapping the base metals zone [21].  

6.2. North Glojeh as an epithermal deposit 

North Glojeh veins share a common paragenesis including an early, massive pyrite and magnetite 

stage; a main stage contains Cu-Sb-As-Fe-S minerals and base metal with silver minerals; and late 

precious metals. The stage 1 and 2 mineralization is more akin to the high-sulfidation type, with alunite 

alteration assemblage and existence high sulfide minerals such as enargite and covellite and likely of 

magmatic derivation [22]. On the other hand, mineralization in stage 3 characterized by abundant base 

metal and silver associated manganese rich mineral and argilic alteration. Stage 3 could be compared 

with the intermediate-sulfidation type [23]. FS2 calculated for stage 3 (using Fe in sphalerite) is 

consistent with intermediate sulfidation state (10-10.0–10-10.5). Our studies  have demonstrated that 

Au and Ag were introduced during Stage 2 and 3 sulfide mineralization, and were subsequently 

remobilized during oxidation by relatively low-temperature fluids dominated by meteoric water in 

stage 4. North Glojeh veins may be summarized as a case of progressive shifting with time from 

magmatic-controlled hydrothermalism (stage 1 and 2) toward meteoric-dominated hydrothermalism 

(precious metal deposition). Silver and base metal transport in the epithermal environment is 

dominated by chloride complexes [27, 28]. These complexes are more important for silver and base 

metal transport rather than for gold. In contrast, the Au (HS)2- bisulfide complex is most important 

species for gold transportation in the epithermal environment [27], and thus gold transport is not 

affected by salinity in the same way as silver and base metals. Boiling and mixing are the two principal 

physical processes affecting mineral deposition in hydrothermal systems [28]. Boiling occurs in the up 

flow of most high permeability systems, whereas linear thermal profiles are common on the margins 

(due to mixing or low permeability; [29]). The relationship between fluid inclusion Th and Tmice data 

from the North Glojeh veins [30] clearly shows a trend of boiling, mixing and dilution. Boiling has 

been documented in other epithermal systems as well, and has been empirically invoked as the 

principal process controlling metal deposition [31].  
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7. Conclusion  

• Ore deposition was related to the development of a high enthalpy geothermal system in 

THMP, and related to Eocene to Oligocene volcano-plutonism. 

• The North Glojeh district is a classic example of silver-base metal epithermal mineralization 

in Iran, and is one of the principal orebodies in the THMP. 

• The mineralization process occurred in four stages. During stage 1 and 2, magmatic and hot 

acid sulfur- rich fluids deposited massive sulfides (pyrite, Cu sulfides). During stage 3, base 

metal sulfides, then precious metal mineralization (stage 4). 

• The North Glojeh deposit is a typical epithermal deposit, with features of either high-

sulfidation (stage 1 and 2) associated with advanced argilic alteration, or intermediate-

sulfidation (stage 3) types of epithermal deposits associated with argilic alteration (chlorite 

zone). Stage 4 also show features of low sulfidation type of epithermal ore deposits.  

• Longitudinal sections of the veins show that the base metals are concentrated at depth and 

precious metals at shallow levels, which is in agreement with metal zoning in boiling systems.  
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