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Abstract  

Synchronization between two chaotic systems occurs when the trajectory of one of the system asymptotically 

follows the trajectory of another system due to coupling or due to forcing. In this research paper, the synchronization 

problem between two identical Li and identical Lorenz systems and nonidentical Li and Lorenz Chaotic Systems 

have been addressed. In this study, the synchronization is performed through a nonlinear controller based on 

Lyapuonov Stability Theory to stabilize the error dynamics. It has been shown that the proposed strategies have 

excellent transient performances using less control effort with fast transient speed and has shown analytically as well 

as graphically that synchronization is asymptotically globally stable.  Numerical simulations are carried out to verify 

and support the analytical results of the proposed methodology by using mathematica 9. 

Keywords:  Synchronization, Nonlinear Active Control, Lyapunov Stability Theory, Lorenz & Li Chaotic Systems. 

1. Introduction 

The Synchronization of Chaos is one way of explaining sensitive dependence on initial conditions which is known 

as the Butterfly Effect [1].  
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Basically the issue of chaos synchronization is in designing a coupling between the two systems in such a way that 

the chaotic time evaluation becomes absolute. The output of the response (slave) system asymptotically follows the 

output of the drive (master) system [1]. After the pioneering work of Pecora and Carroll, increasing interest has been 

generated in chaotic synchronization and has attracted the attention of many researchers due to its powerful 

applications in physics and engineering sciences [2, 3]. In this line, many effective control techniques have been 

successfully applied to realize chaos synchronization [4]. Notable among these techniques, chaos synchronization 

using Nonlinear Active Control Techniques have recently been widely accepted as one of the powerful techniques in 

synchronizing two identical as well as nonidentical chaotic systems [5-7].  As most of the real-world control 

problems are nonlinear, Nonlinear Control Techniques take the advantage of the given nonlinear system dynamics to 

generate high-performance designs and no gain matrix or Lyapunov exponents are required for its execution. These 

characteristics free the designer to focus on the synchronization problem, leaving monotonous model manipulations 

[2].  

The main focus of this study is to present new analysis to explain the stability of the error dynamics for the global 

chaos synchronization of two identical Lorenz [8] and two identical Li [9] systems and nonidentical Li and Lorenz 

chaotic systems by achieving two main objectives. The first objective is to utilize fewer control effort to synchronize 

two identical as well as nonidentical chaotic systems and the second objective is the fast synchronization of the error 

signals. This study can be considered as an improvement to the existing results in [10] and [11].  

Based on the Lyapunov Stability Theory and using the approach in [7], a class of nonlinear control schemes will be 

designed to achieve the synchronization between two identical Lorenz and two identical Li systems and nonidentical 

Li and Lorenz Chaotic Systems.  We will establish our results using Lyapunov Stability Theory [12] and will 

achieve asymptotically globally synchronization. Numerical simulations will be furnished to show the effectiveness 

of the proposed study and then to compare the performance of our proposed approach to those in [10] and [11]. 

The rest of the paper is organized as follows: Section 2, the problem statement and methodology for nonlinear 

control is introduced. Section 3, discusses the chaos synchronization of identical Lorenz and identical Li chaotic 

systems and nonidentical Li and Lorenz chaotic system. In section 4, numerical simulations are presented to verify 

the effectiveness of our proposed approaches and finally the concluding remarks are then given in section 5. 

2.   Designing of Nonlinear Active Controller 

 

Most of the synchronization techniques belong to the master-slave system arrangement. By master-slave system 

arrangement means that two oscillators are coupled in a way in which one system is forced to track the other system 

and the states of two systems show similar behavior. 

Thus let us consider a drive-response (master-slave) systems configuration for a chaotic system as, 

 

  1 1 ( )x Px Q F x= +             (Master system)   

  and          (1) 

  1 1 (y) ( )y P y Q G tφ= + +   (Slave system)  
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Where, 
1

1 1 1 1[ ,   ,...., ] , [ ,   ,...., ]T T n
n nx x x x y y y y R ×= = ∈  are the corresponding state vectors, 1 2, n nP P R ×∈   are 

the matrices and 1 2, nQ Q R∈ are the vectors, , : n nF G R R→ are the nonlinear continuous functions of the drive 

and response systems respectively and  
1

1 2( ) [ ( ), ( ),...., ( )]T n
nt t t t Rφ φ φ φ ×= ∈  is an injected additive nonlinear 

controller to the controlled system.  

If 1 2 1 2( ) ( )   /    ,and oF G r P P Q Q== =  , then x and y are the states of two identical (nearly identical) chaotic 

systems and if 1 2 1 2( ) ( )   /    ,and oF G r P P Q Q≠≠ ≠  , then x and y are the states of two nonidentical chaotic 

systems.  

The error dynamics for the synchronization of (2.1) can be described as, 

     ( ) ( , , ) ( )e t H x y e tφ= +      (2) 

Where ( , , )H x y e  that contains linear terms and nonlinear terms of the master and slave systems, and 

( ) ( ) ( )i i ie t y t x t= − . 

For the two ( identical or non-identical ) chaotic systems in the absence of a proper controller, ( 0iφ = ), if the initial 

conditions ( )1 2 1 2(0), (0),...., (0) (0), (0),...., (0)m m nm s s nsx x x y y y≠
, then the trajectories of the two the chaotic 

systems will quickly diverge from each other in all future states and will become uncorrelated. Hence the role of a 

proper feedback controller for the synchronization problem is, to force the error dynamics converges to zero for all 

initial conditions [10], 

i.e.,   
lim ( ) lim ( ) ( ) 0i i it t

e t y t x t
→∞ →∞

= − =
,    for all (0) n

ie R∈ , 

then the two systems (2.1) are said to be synchronized.   

Theorem 1 [7]. The trajectories of the two (identical or nonidentical) chaotic oscillators (1) for all initial 

conditions ( )1 2 1 2(0), (0),...., (0) (0), (0),...., (0)d d nd r r nrx x x y y y≠
  will be synchronized asymptotically 

globally with appropriate nonlinear regular stabilizing feedback controller, 
1

1 2( ) [ ( ), ( ),...., ( )]T n
nt t t t Rφ φ φ φ ×= ∈       . 

Proof: Let us construct a candidate Lyapunov Error Function as, 

    ( ) TV e e Me=        (3) 

where the matrix M  is a positive definite matrix [7]. Further it is assumed that all the variables and parameters of 

the drive and response systems are available and measureable. 

It may be noticed that,  : n nV R R→  is a positive definite function by construction. It may achieve the 

synchronization by selecting suitable non-linear controller ' ( )tφ ' to make ( ) TV e e Ne= −
 be a positive definite 

function (i.e., the matrix N is also a positive definite matrix), then by the Lyapunov Stability Theory [12], the states 

of both drive and response systems (1) will be asymptotically globally synchronized.  
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3.1   Chaos Synchronization of Two Identical Lorenz Chaotic Systems  

 

The main goal of this section is to focuses on applying Non-linear controller technique to study and investigate new 

results for the global chaos synchronization for two identical Lorenz systems [8]. For this purpose, let us consider a 

master for Lorenz chaotic system is given as follow; 

   

1 1 1

1 1 1 1 1

1 1 1 1

( )x a y x
y cx y x z
z x y bz

= − 
= − − 
= − 






  (Master system)    (4) 

and the slave system is described as 

   

   

2 2 2 1

2 2 2 2 2 2

2 2 2 2 2

( )x a y x
y cx y x z
z x y bz

φ
φ

φ

= − + 
= − − + 
= − + 






           (Slave system)      (5) 

  Where  , ,    2, 1,n
i i ix y z R i =∈  are the corresponding state vectors of master and slave systems respectively, a, b 

and c are the system parameters, 1 2 3( ) [ ( ), ( ), ( )]Tt t t tφ φ φ φ= are the Nonlinear Controller that is yet to be 

designed. The Lorenz system exhibit a chaotic attractor with parameter values, 

8  0,  
3

1 28  anda b c= ==
. The error 

dynamics for the two chaotic systems (4) and (5) is described as, 

  

1 2 1 1

2 1 2 1 1 2 2 2

3 3 2 2 1 1 3

( )e a e e
e ce e x z x z
e be x y x y

φ
φ

φ

= − + 
= − + − + 
= − + − + 






         

where 1 2 3 ,     andφ φ φ are the Nonlinear Active Controllers and, 1 2 1 2 2 1 3 2 1, ,e x x e y y e z z= − = − = − . 

The main focus of this section is to investigate and analyze the synchronization of two identical chaotic systems (4) 

and (5) by designing such a Nonlinear controller that when synchronizing the two chaotic systems (4) and (5), the 

effect of nonlinearity of the chaotic systems is not neglected and the error signal of the two identical chaotic systems 

converge to the equilibrium (origin) asymptotically globally with less control effort and sufficient transient speed. 

To clinch this goal, let us assume the following theorem. 

Theorem 2. The trajectories of the two Chaotic Systems (4) and (5) will achieve synchronization asymptotically and 

globally for any initial conditions ( )1 1 1 2 2 2(0), (0), (0) (0), (0), (0)x y z x y z≠  with following Nonlinear Control 

law: 

  1( ) 0tφ = ,  2 2 1 1 2 2( ) 2t ce x z x zφ = − − +   ,  3 1 1 2 2( )t x y x yφ = −  

Proof:  Let us construct a Lyapunov Error Function Candidate as; 
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   ( ) TV e e Me=         (6) 

     

where  

0.2 0 0
0 0.75 0
0 0 1

M
 
 =  
 
  is a positive definite function.  

Now the time derivative of the Lyapunov function is, 

 

2 2 2
1 2 3

40 0 0
( ) 40 4 56 0 4 0 0

0 0 56

TV e e e e e e
 
 = − − − = −  
 
 

 

 

Therefore,  ( ) TV e e Ne= −
  and 

40 0 0
0 4 0
0 0 56

N
 
 =  
 
   which is also a positive definite matrix. 

Hence based on Lyapunov stability theory [12], the error dynamics converges to the origin asymptotically. Thus the 

master and slave Lorenz chaotic systems are asymptotically globally synchronized. 
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3.2 Chaos Synchronization of Two Identical Li Systems  

 

The main objective of this section is to study and investigate new results for the global chaos synchronization for 

two identical Li system [9]. For this purpose, let us consider the master-slave systems configuration for Li chaotic 

system is given as follow; 
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1 1 1

1 1 1 1

1 1 1 1

(y )x x
y y x z
z x y z

α

β γ

= − 
= − + 
= − − 






    (Master system)   (7) 

and 

  

2 2 2 1

2 2 2 2 2

2 2 2 2 3

(y )x x
y y x z
z x y z

α φ
φ

β γ φ

= − + 
= − + + 
= − − + 






   (Slave system)   (8) 

where 1 1 1, , nx y z R∈  are the state variables of the master system with   ,     andα β γ are the system parameters 

and  2 2 2, , nx y z R∈  are the state variables of the corresponding slave system and 
1

1 2 3( ) [ ( ), ( ), ( )]T nt t t t Rφ φ φ φ ×= ∈  are the Active Feedback Controller. The Li system exhibits a chaotic attractor 

when the parameter values are taken as, α= 5,  β = 16 and γ = 1. 

For chaotic synchronization of the above master-slave systems (7) and (8), the error dynamics is described as, 

  

1 2 1 1

2 2 2 2 1 1 2

3 3 2 2 1 1 3

( )e e e
e e x z x z
e e x y x y

α φ
φ

γ φ

= − + 
= − + − + 
= − − + + 






         (9) 

where 1 2 3 ,     andφ φ φ are the Nonlinear Active Controllers and, 1 2 1 2 2 1 3 2 1, ,e x x e y y e z z= − = − = − . 

For the two identical chaotic systems (7) and (8), in the absence of a suitable controller,  the trajectories of the two 

identical systems will diverge exponentially for all future states with a course of time and will become 

unsynchronized  for all initial conditions. Thus the aim of the synchronization problem is to design a feedback 

controller ( )tφ  such that the error dynamics (9) converge to zero,   

i.e.,    
lim ( ) 0
t

e t
→∞

=
,    for all (0) n

ie R∈ . 

The aim of this section is, to focus on synchronizing two identical chaotic systems (7) and (8) by designing a 

nonlinear controller such that when synchronizing the two chaotic systems, the effect of nonlinearity of chaotic 

systems should not be neglected and the error dynamics convergence to the origin asymptotical globally with less 

control effort and enough transient speed. Therefore, using the approach in [7], selecting such a suitable Lyapunov 

error function candidate that will ensure asymptotically globally stability. For this purpose, let us assume the 

following theorem. 

Theorem 3. The two Chaotic Systems (7) and (8) will approach global and asymptotical synchronization for any 

initial conditions ( )1 1 1 2 2 2(0), (0), (0) (0), (0), (0)x y z x y z≠  with following Control law; 

  1( ) 0tφ = ,   2 1 2 2 1 1( ) 2 ( )t e x z x zφ = − − −  ,  3 1 1 2 2( )t x y x yφ = −  

Proof. Let us assume that the parameters of the master and slave systems are known and the states of both chaotic 

systems are measurable. Substituting the proposed controllers in (9), we have, 
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1 2 1

2 1 2

3 3

( )
2

e e e
e e e
e e

α

γ

= − 
= − − 
= − 






      (10) 

Let us construct the same Lyapunov Error Function Candidate as in (6) and constructing the matrix M as; 

1 0 0
0 2.5 0
0 0 0.5

M
 
 =  
 
   

Now the time derivative of the Lyapunov Error Function is, 

2 2 2
1 2 3

10 0 0
( ) 10 5 0 5 0 0

0 0 1

TV t e e e e e
 
 = − − − = −  
 
 

 

 

i.e.,   ( ) TV t e Ne− =
  and N = 

10 0 0
0 5 0
0 0 1

 
 
 
 
   which is also a positive definite matrix. 

We can see that ( )V e  and ( )V e−   are positive definite functions. Hence the error states,    

   
lim ( ) 0it

e t
→∞

=
 

Thus by the Lypunov Stability Theory [12], the two identical Li chaotic systems are asymptotically globally 

synchronized. 
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3.3    Synchronization between Two Different Li and Lorenz Chaotic Systems 

 

The main focus of this section is to analysis the switching synchronization between two nonidentical Li and Lorenz 

chaotic systems [9, 8] using the Nonlinear Control. To achieve this goal, it is assumed that the Li Chaotic System [9] 

drives the Lorenz Chaotic System [8]. Therefore, the master and slave systems arrangement is given as; 

1 1 1

1 1 1 1

1 1 1 1

(y )x x
y y x z
z x y z

α

β γ

= − 
= − + 
= − − 






   (Master system)    (11) 

and   

  

2 2 2 1

2 2 2 2 2 2

2 2 2 2 3

( )x a y x
y cx y x z
z x y bz

φ
φ

φ

= − + 
= − − + 
= − + 






            (Slave system)      (12) 

Where  , ,    2, 1,n
i i ix y z R i =∈  are the corresponding state vectors,  ,     andα β γ and a, b and c are system 

parameters of the master and slave systems respectively,  1 2 3( ) [ ( ), ( ), ( )]Tt t t tφ φ φ φ= are the Nonlinear Controller 

that yet to be designed. 

For chaotic synchronization of the above master-slave systems, the error dynamics is described as, 

1 1 2 1 2 1

2 2 1 1 1 1 2 2 2

3 3 1 1 1 2 2 3

( ) ( )
( )

(1 )

e ae e a x a y
e e ce cx x z x z
e be b z x y x y

α α α φ
φ

β φ

= − + + − + − + 
= − + + + − + + 
= − + − − + + + 






      (13) 

To achieve asymptotically globally stability of the error dynamics (13) using the Nonlinear Active Control, defining 

the controller 
1

1 2 3( ) [ ( ), ( ), ( )]T nt t t t Rφ φ φ φ ×= ∈ as, 

  

1 1 2

2 1 2 1 1 2 2

3 1 1 1 2 2

( ) ( ) ( )
( ) 2 ( )
( ) ( 1) ( )

t a x a y
t cx cx x z x z
t b z x y x y

φ α α
φ
φ β

= − + − 
= − + + 
= − + − +        (14) 

Now let us take the same Lyapunov Error function as in (6) and selecting the matrix M as, 

1 0 0
4

150 0
32

10 0
7

M

 
 
 
 =  
 
  
   

The time derivative of the Lyapunov Error Function is, 

234 

 



 International Journal of Sciences: Basic and Applied Research (IJSBAR) (2014) Volume 13, No  1, pp 225-238  

  

2 2 2
1 2 3

5 0 0
15 15( ) 5 8 0 0 0
16 16

0 0 8

TV e e e e e e

 
 
 = − − − = −
 
 
 

 

  

Therefore,  ( ) TV e e Be= −
and 

5 0 0
150 0
16

0 0 8

N

 
 
 =
 
 
   is also a positive definite matrix. 

Hence based on Lyapunov Stability Theory [12], the origin of the error dynamics of two nonidentical chaotic 

systems (11) and (12) converge to the origin asymptotically. Thus the two chaotic systems (11) and (12) are 

asymptotically globally synchronized. 
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4. Numerical Simulations 

 

Numerical simulations are furnished to verify the effectiveness of the proposed approach. For the Li systems the 

parameter values are taken as; α= 5,  β = 16 and γ = 1 , with initial conditions, x1(0) = 12, y1(0) = 15,   z1(0) = 7, 

x2(0) = -5, y2(0) = 0, z2(0) = -10.  
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For the Lorenz system, the parameters are taken as, a = 10, b = 28 and c = 8/3, with initial values, x1(0) = 10,     

y1(0) = 20,     z1(0) = 30 and x2(0) = 2, y2(0) = 2, z2(0) = 2. 

For the above chosen values, we have plotted the time series of states variables for identical systems (figures 1- 10) 

and for nonidentical systems (figures 11-15) whereas figure-4 and figure-9 depicts the time series of the errors 

dynamics for the two identical Lorenz and two identical Li chaotic systems and figure-14 for nonidentical systems 

and lastly, in order to discuss the stability, the time series of the derivatives of the Lyapunov errors functions have 

been plotted in figures-5, 10 and 15. 

Fig. 4 shows the synchronization error for identical Lorenz Chaotic System when the controls are switched on at t = 

0 s. It has been shown that the synchronization error has already achieved at t = 1s, while the synchronization error 

was achieved at t = 5s for [8] and thus the time delay is almost 4s. Moreover only two nonlinear controllers were 

applied to synchronize two identical Lorenz Chaotic Systems.  

Fig. 9 shows the synchronization error for identical Li chaotic system when the controls were switched on at t = 0s. 

It has been shown that the synchronization error has already achieved at t = 4s, while the synchronization error was 

achieved at t = 8s for [9] and thus the time delay is almost 4s. On the other hand, only two controllers were applied 

to synchronize two identical Li Chaotic Systems.  

Fig. 14 shows the synchronization error of two nonidentical Li and Lorenz Chaotic Systems. For the two different 

chaotic systems that contain parameters mismatch and different structures, the controller was used for synchronizing 

the states of master and slave systems asymptotically globally. 

 

5. Summary and Conclusion 

 

 In the present study, simple but efficient Nonlinear Control Techniques were applied to achieve synchronization 

asymptotically globally between two identical Li and two identical Lorenz Chaotic Systems and two completely 

different chaotic Systems (Li and Lorenz). All results are furnished in graphical forms with time history in support 

of our analytical studies (Figures 1- 15). 

In this study, it was found that only two nonlinear feedback controllers were utilized to achieve the synchronization 

asymptotically globally between the two identical Li and identical Lorenz Chaotic systems. This research study 

focused on selecting such a suitable Lyapunov error function candidate that ensured the global stability of the error 

dynamics of two coupled chaotic systems. It has been shown that the error signals converge to the origin very smoothly with 

minimum rate of decay, which shows that the investigated controller is more robust to accidental mismatch in the 

transmitter and receiver. In addition, the synchronization with negative derivative of the Lyapunov Errors Functions 

allows large synchronizable interval which is especially significant for engineering applications.  

Since the synchronization of two identical as well as nonidentical chaotic systems assumes potential applications in 

the field of nonlinear dynamics, the result of this research work should be beneficial and could be employed in the 

field of secrete communication. 

A comparative study can further be done to observe the robustness and stability of the proposed approach under the 

bounded noise. 
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