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Abstract 

This article studied discriminant analysis procedure that is based on multivariate ranking with emphasis on 

Spatial or L1 depth classifier using Eviews and SPSS computer packages. The performance of the classifier is 

assessed using both simulated and real life data. The result of the study revealed that the classifier is optimal in 

classifying observations into one of the two pre-defined groups.  

Keywords: Data depth; Spatial or L1 depth; linear discriminant analysis; nonparametric discriminant analysis; 

Probability of misclassification (PMC)  

1. Introduction 

Discriminant analysis is one of the data mining techniques used to discriminate a single classification variable 

using multiple attributes. Discriminant analysis assigns observations to one of the pre-defined groups based on 

the knowledge of the multi-attributes.  
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When the distribution within each group is multivariate normal, a parametric method can be used to develop a 

discriminant function using a generalized squared distance measure.  Linear discriminant analysis (LDA) based 

methods (parametric methods) suffer a fundamental limitations originating from the parametric nature of 

covariance matrices which are based on Gaussian distribution assumption. The performance of these methods is 

not optimal when the actual distribution is Non-Gaussian. LDA is guaranteed to find the best direction when 

each class has a Gaussian density with a common nonsingular covariance matrix. Non-parametric discriminant 

methods are used in finding important discriminant directions without assuming that the class densities belong 

to any particular parametric family.   

A discriminant analysis procedure uses all the variables that the training data contains and uses their correct 

classification information to create a discriminant rule or a classifier. Classification is done by feeding new 

observations into this classifier and getting the group membership to which the new observations belong. The 

performance of a classifier could be evaluated by estimating probabilities of misclassification (PM) of new 

observations in the validation data. When two or more classifiers performed equally well in terms of their 

probability of misclassification (PMC), classifier that is robust to deviations is more preferred.  

A lot of research works have been done in the field of discriminant analysis in an effort to come up with 

classifiers that are robust to violations of certain assumptions. Most of the work done to make LDA robust 

concentrated on replacing the measures of location and scatter of LDA classifiers by their robust counterparts. 

However when the covariance structure is singular or close to it, the later methods may fail to be optimal. To 

solve singularity problem, projection pursuit approach has come up as a remedy. This method aimed at reducing 

a high dimensional data set to low dimension so that the statistical tool for the low dimensional data can be 

applied. It is observed that most of the projection pursuit methods fail in the presence of multivariate outlier. As 

a solution to some of these problems, discriminant procedure based on multivariate rank was proposed by [1]. 

This procedure works in high-dimensional spaces and aimed at reducing the dimension to one. In this article we 

are going to investigate the performance of this method through several simulations and by applying it to a real 

data set.  

This paper would be organizes into Sex Sections. Section one contains the introduction. In Section two we have 

the description of discriminant procedures based on multivariate rank.   Section three contains the simulated and 

real data sets. The illustration of L1 depth classifier discussed in Section two and the result of the data are 

presented in Section four using one of the generated samples.  The summary and conclusion of the study are in 

section five. References are in Section seven.  

2. Procedures Based on Multivariate Ranking 

In univariate setting, the statistical method that used ranking-based nonparametric techniques like Mann-

Whitney test, Kruskal-Wallis test, Friedman test and others do not depend on restrictive distributional 

assumption and hence are robust to deviation from these assumptions. For higher dimension, and alternative to 

projection pursuit is the idea of data depth which is a multivariate version of rank [2,3]. Data depth are used to 

measure the “centrality” of a given multivariate sample point with respect to its underlying distribution 
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(examples [4], [5], and [6]). In particular, a depth function assigns higher values to point that are more central 

with respect to a data cloud. This naturally gives a center-outward ranking of the sample point. Popular depth 

functions available in the literature include: 

• Mahalanobis depth as in [7,8]  

• Half-space depth as in [9] 

• Simplicial depth as in [10] 

• Majority depth as in [11] 

• Projection depth as in [12] 

• Spatial or L1 depth as in [13,1] 

Definitions of some of the more Popular Depth functions are 

1. The Spatial or L1 depth is given by 

       𝐷1(𝑋;𝐹𝑥) = 1 − �𝐸𝐹𝑋 �
𝑥−𝑋
‖𝑥−𝑋‖

��                                                                 (1)  

Where X~𝐹𝑋, and ‖. ‖ is the Euclidean norm. 

2. The Mahalanobis depth function is given by 

     𝑀𝐷(𝑋,𝐹𝑋) = �1 + �𝑥 − 𝜇𝐹𝑋�′ ∑ �𝑥 − 𝜇𝐹𝑋�
−1
𝑥 �−1                                             (2)  

Where 𝜇𝐹𝑋 and 𝛴𝑥 are the mean vector and covariance matrix of 𝐹𝑋 respectively. The sample version of MD is 

obtained by replacing 𝜇𝐹𝑋 and 𝛴𝑥−1 with 𝑋� and 𝑆𝑥−1. 

3. The Half-space depth function is given by  

     𝐻𝐷(𝑋;𝐹𝑋) = {𝑃(𝐻):𝐻 𝑖𝑠 𝑎 𝑐𝑙𝑜𝑠𝑒 ℎ𝑎𝑙𝑓 − 𝑠𝑝𝑎𝑐𝑒 𝑖𝑛 𝑅𝑝,𝑋 ∈ 𝐻}𝐻
𝑖𝑛𝑓                (3)  

It turns out that Turkey depth 𝑇𝑋(𝑐) is the half-space depth of c in one dimension with respect to the 

population 𝐹𝑋, that is, 𝑇𝑋(𝑐) = 𝐻𝐷(𝑐,𝐹). Half-space depth is sometimes referred to as Tukey depth. 

0 ≤ 𝐷𝐹 ≤ 1,where DF is depth function. 

𝑋1 is more central to (or deeper in) 𝐹𝑋 than  𝑋2 in 𝐹𝑥 if 𝐷𝐹(𝑋1;𝐹𝑋 ) > 𝐷𝐹(𝑋2;𝐹𝑋 ).  

This is true for any depth function𝐷𝐹. Let 𝑓 be the class of distributions on the Borel sets of 𝑅𝑝 : a statistical 

depth function is a bounded, nonnegative mapping  𝐷:𝑅𝑝 × 𝑓 → 𝑅. 

There are certain properties that are desired of depth functions [5,14]:  

• Affine invariance: the depth of a point 𝑋 ∈ 𝑅𝑝 should not depend on the underlying coordinate system 

or in particular, on the scale of the underlying measurements.  
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𝐷𝐹(𝐴𝑋 + 𝑏;𝐹𝐴𝑋+𝑏) = 𝐷𝐹(𝑋;𝐹𝑋)                                              (4) 

• Maximality at center: for a distribution having a uniquely defined center (e.g; the point of symmetry 

with respect to some notion symmetry) , the depth function should attain maximum value at this center. 

If 𝜇 is the center of F, then 

𝐷𝐹(𝜇,𝐹𝑋) = 𝐷𝐹(𝑋;𝐹𝑋)𝑋𝜖𝑅𝑝
𝑠𝑢𝑝                                                        (5) 

• Monotonicity relative to deepest point: as a point 𝑋 ∈ 𝑅𝑝 moves away “from the deeper point” (the 

point at which the depth function attains maximum value; in particular, for a symmetric distribution, 

the center) along any fixed ray through the center, the depth at X should decrease monotonically. 

• Vanishing at infinity: the depth of a point X should approach zero as ‖𝑋‖ approaches infinity 

𝐷𝐹(𝑋;𝐹𝑋 ) → 0 𝑎𝑠 ‖𝑋‖ → ∞ 

The interested reader may find an extensive list of depth function along with their definition in [8,5,15]. Among 

the numerous depth functions that are in existence, Mahalanobis depth and Spatial or L1 depth are two of the 

most attractive ones due to their ease in computation. They can be computed exactly for any dimension. The 

computation of many other depth functions may require algorithms that provide only approximations. This is 

especially true for higher dimensional data. For example, one usually has to construct very complicated 

approximation algorithms to compute the half-space depth of points in three or higher dimensions. 

Taking advantage of this notion of ordering multivariate data in a center-outward manner, [1] proposed the 

maximum L1 depth classifier that uses the discriminant function 

                        𝑆(𝑧,𝐹𝑋,𝐹𝑌) = 𝐷(𝑧;𝐹𝑌 ) − 𝐷(𝑧;𝐹𝑋 )                          (6) 

= �𝐸𝐹𝑌 �
𝑧 − 𝑌
‖𝑧 − 𝑌‖

�� − �𝐸𝐹𝑋 �
𝑧 − 𝑋
‖𝑧 − 𝑋‖

�� 

              =  � �
𝑧 − 𝑌
‖𝑧 − 𝑌‖

𝑑𝐹𝑌(𝑦)
𝑅𝑝

�  =  � �
𝑧 − 𝑋
‖𝑧 − 𝑋‖

𝑅𝑝

𝑑𝐹𝑋(𝑥)�           (7)  

The new observation 𝑍 = 𝑧 is then classified in  𝜋𝑥 if 𝑆(𝑧,𝐹𝑋𝐹𝑌) > 0 and in 𝜋𝑦 otherwise. Despite its 

computational ease, a major drawback of this classifier is that it lacks affine invariance because L1 depth is not 

affine invariant. However, it can be made affine invariant by taking ∑ (𝑧 − 𝑋)
−12
𝑥  and ∑ (𝑧 − 𝑌)

−12
𝑥  in place of 

𝑧 − 𝑋  and 𝑧 − 𝑌, respectively, in equation (7) as in [13]; [15]. Note that one can use any affine equivariant 

estimator of ∑𝑥 and ∑𝑌  when computing the discriminant function. An alternative method of obtaining 

affine invariance is to scale the data along its principal component direction (PC-scaling) as given in [16]. One 

could use robust principal component (e.g. robust PCA given by [17]) or scale the data with the robust estimate 

of covariance structure which will make the L1 depth function affine invariant in addition to making it robust 

against deviation. 
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For practical purposes, given two independent training samples 𝑥1, 𝑥2, … , 𝑥𝑚 and 𝑦1 ,𝑦2, … ,𝑦𝑛 from 𝜋𝑥 and 𝜋𝑦, 

respectively, defined on 𝑅𝑝(𝑝 ≥ 1)  the sample version of 𝐷(𝑧;𝐹𝑋 ) and 𝐷(𝑧;𝐹𝑌 ) given in (7) can be found by 

replacing the empirical cdf in pace of 𝐹𝑋 and 𝐹𝑌 resulting in the sample version of 𝑆(𝑧,𝐹𝑋,𝐹𝑌) given by  

𝑆�𝑧,𝐹𝑥𝑚,𝐹𝑦𝑛� = �
𝑧 − 𝑦𝑗
�𝑧 − 𝑦𝑗�

𝑑𝐹𝑦𝑛(𝑦)
𝑅𝑝

− �
𝑧 − 𝑥𝑗
�𝑧 − 𝑥𝑗�

𝑑𝐹𝑥𝑚(𝑥)
𝑅𝑝

           

= �
1
𝑛
�

𝑧 − 𝑦𝑗
�𝑧 − 𝑦𝑗�

𝑑𝐹𝑦(𝑦)
𝑛

𝑗=1

� − �
1
𝑚
�

𝑧 − 𝑥𝑖
‖𝑧 − 𝑥𝑖‖

𝑑𝐹𝑥(𝑥)
𝑚

𝑖=1

�                       (8) 

It must be noted that the maximum L1 depth classifier is in the class of classifier known as maximum depth 

classifiers [15] in that any depth function DF can be used in place of the L1 depth function. The optimality of the 

classifier is dependent on the choice of the depth function. The choice of depth function could be based on 

various properties like robustness. QDF is obtained if Mahalanobis depth is used in place of the L1 depth in 

(8).One would assign the new observation 𝑍 = 𝑧 in 𝜋𝑥 if 𝑆�𝑧,𝐹𝑥𝑚,𝐹𝑦𝑛� > 0 and in 𝜋𝑦  otherwise.   

 3. Data Presentation 

To evaluate the discriminant procedure discussed in section two, two data sets are studied in this paper; 

simulated and real life data. 

3.1 Simulation Data 

The discriminant procedure by multivariate ranking considered is evaluated on 6 simulated data sets. The 

estimators is then evaluated on data sets generated from a variety of settings with different dimensions P = 

2,3,4,5,6, and 7; the same number of groups 𝑔 = 2; and different size of samples 𝑛. In all the cases the class 

distributions are binomial, but the generated data sets differ in sizes and probability of successes of the groups. 

The various combinations of the data sets are presented below:  

Table 1: data specifications and their optimal probability of misclassification (PMC) 

S/N Sample  

Size 

No. of 

variables 

No. of trials   

Group X    Group Y 

Probability of success 

 Group X      Group Y 

P(MC) 

1 100 5 25 40 0.5, …,0.5 0.7,…,0.7 0.3300 

2 80 4 50 80 0.6,…,0.6 0.3,…,0.3 0.5883 

5 60 2 40 50 0.5,…,0.5 0.5,…,0.5 0.5000 

6 50 7 30 60 0.8,…,0.8 0.6,…,0.6 0.698 

9 20 3 20 30 0.4,…,0.4 0.6,…,0.6 0.352 

10  10 6 25 30 0.3,…,0.3 0.6,…,0.6 0.365 
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3.2 Real data 

The real life data we used are obtained from Ph.D seminar paper presented at the Department of Statistics, 

Nnamdi Azikiwe University, Awka, Nigeria by [18], sourced from Nigeria Institute for Oil Palm Research with 

emphasis on the characteristics and yield of two different progenies of palm tree. The characteristics considered 

for classification are leaf count in the nursery, height in nursery, leaf count in field, height in field, canopy 

spread in meters, sex ratio (%), and yield in 4 years. The number of sample size studied is 40. 

4.  Illustration and the Result of the Study 

Because of the nature of our data and its computational ease, spatial or L1 dept classifier is used in this work to 

find the depth of each data Point. We started by dividing the data set into two equal parts to have training and 

the validated data for testing the performance of our classifier. Using the training data we first centered all the 

data points: This is done by finding the deviation of each data point from their means using Eviews 3.1 

statistical package. The Euclidean norm of each data point is calculated to reduce the p-dimensional X an Y data 

sets to a unit ball. For the real life date, ∑ (𝑧 − 𝑋)
−12
𝑥  and ∑ (𝑧 − 𝑌)

−12
𝑥  were used in place of 𝑧 − 𝑋 and 𝑧 − 𝑌 to 

make L1 depth classifier affine invariant. With the centered data and the calculated norm the depth of the data 

points in the X and Y sample are computed by the combination of Eviews and SPSS computer packages. The 

calculations revealed that all the depths in X vector and Y vector spaces obtained belong to 𝑅+ space. With the 

data depths, L1 depth classifier is used to classify the validated data sets and the following results are obtained. 

Table 2: estimated probability of misclassification according to sample size 

Sample size 

(validated 

data) 

50 40 30 25 10 5 Life Data 

PMC 0.0000 0.0125 0.0167 0.02 0.0500 0.0000 0.2500 

 

5.  Summary and Conclusion 

The L1 depth classifier was evaluated in a prediction context. The performance of the classifier was evaluated by 

the misclassification probabilities obtained using apparent error rate of the validated data sets. From table 3 it is 

clear that the classifier in optimal in classifying data with number of variables more than the sample size. Apart 

from real life data where there is replacement in the formula, the PMC is not large enough in all other cases to 

conclude that the classifier is not optimal.  
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