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Abstract 

 The computational comprehension of intelligent behavior is the main goal of the scientific and engineering field 

of artificial intelligence (AI). Many human professions, particularly clinical diagnosis and prognosis, greatly 

benefit from artificial intelligence. The authorities need to take action to stop the excessive and improper the 

application of antibiotics to battle the increasing percentages of resistance to antibiotics since the occurrence of 

AMR is becoming a serious problem. In addition to causing drug resistance, the extensive using antibiotics in 

medical settings has raised the risk of super-resistant microorganisms. As antimicrobial resistance (AMR) 

increases, physicians face challenges in rapidly treating bacterial infections, and the expense of medicine may 

become unaffordable for patients' healthcare needs. Potential benefits include a potentially infinite speed up in the 

development of novel antimicrobial medications, increased precision in diagnosis and treatment, and decreased 

costs all at the same time, the WHO, has released a ranking of the most important dangerous infections that 

require the development of novel antibiotics due to the threat posed by antimicrobial resistance to global public 

health. The search and introduction of novel antibiotics is an expensive and time-consuming procedure. Just 

eighteen new antibiotics have been authorized since 2014, In line with the WHO study on clinically developed 

antibacterial medications. Thus, new antibiotics are desperately needed. Since its latest technological 

advancement, artificial intelligence (AI) has been quickly used in medication research, significantly increasing the 

effectiveness of discovering new antibiotics. Most AI solutions for AMR that have been proposed are designed to 

be useful tools to assist doctors in their work, not to take the place of a doctor's prescription or advice. 
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1. Introduction  

A natural phenomenon when bacteria, viruses, fungi, and parasites develop what is known as antimicrobial 

resistance (AMR) learn to withstand the medications meant to destroy them. The antibiotic the origin and spread 

have been expedited by misuse and overuse in human medicine, animal husbandry, and the environment. 

antimicrobial resistance (AMR). This syndrome makes treatments that were once successful useless, resulting in 

longer illnesses, greater death rates, and more expensive medical care. Thus, AMR presents a significant and 

immediate worldwide risk to human well-being, necessitating immediate action. The system for monitoring 

antibiotic resistance and use was  

developed according to the World Health Organization (WHO), showing that AMR is becoming more common 

and a major cause of death [1]. It was projected that 1.27 million fatalities worldwide were directly due to AMR 

caused by bacteria in 2019 alone, out of an anticipated 4.95 million deaths worldwide. Western With 27.3 deaths 

from resistance per 100,000 persons, sub-Saharan Africa had the worst death rate overall (20.9–35.3)[2]. The 

study published by according to data from the Centers for Disease Control and Prevention, at least 23,000 deaths 

and over two million illnesses occur annually in the US alone as a result antibiotic resistance to at least first-line 

therapy [3]. Antibiotic-resistant bacteria accounted for almost in 2019 there were 2.8 million diseases in the US 

[4]. By 2050, AMR is anticipated to be the reason for 10 million fatalities annually [5] .The Enterococcus 

faecium, Staphylococcus aureus, K. pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and 

Enterobacter spp. are among the six pathogens that the Infectious Disease Society of America has identified as 

"ESKAPE" organisms, meaning that they present the biggest risk to human health because their rapidly 

developing resistance to antibiotics [6]. The WHO has produced a list of "priority pathogens" resistant to 

antibiotics to assist drug development in identifying the infections that require innovative antibiotics immediately. 

In China, AMR is become a public health concern. 

Information gleaned from the Chinese Antimicrobial Monitoring System indicate a notable rise in Gram-negative 

bacteria's rate of resistance, resistant to carbapenem. Notably, between 2005 and 2022, the percentage of 39.0 to 

71.9% more A. baumannii were found to be carbapenem- resistant, whereas the percentage of from 2.9 to 24.2% 

of cases of carbapenem-resistant K. pneumonia. Furthermore, in recent years, S. aureus resistant to methicillin has 

been continuously found at a high rate of about 30% [7]. There are now fewer treatment choices in clinics for 

bacterial illnesses resistant to antibiotics as a result of the continuous decline in the number of novel medicines 

researched and licensed over the previous ten years, with just four approved between2010 and 2014 [8]. 

Historically, most antibiotics have been found by screening secondary metabolites from soil microbes that have 

antibacterial properties [9]. 

Regrettably, the rediscovery problem—in which the same compounds are discovered repeatedly—is making it 

harder and harder to identify new antibiotics [10]. Therefore, the need for clinical treatment cannot be met by the 

discovery of new drugs alone, particularly for those pathogens that are high on the WHO priority list. The 
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purpose of (AI) research in computer science is to construct intelligent computers that can perform activities that 

normally require human intelligence [11]. AI technologies have been incorporated into various disciplines to 

expedite scientific discoveries. In the field of medicine, AI has made it easier to find new medications and sped 

up the process of developing new drugs and conducting clinical research in its entirety [12]–[13][14]. AI has 

consistently played a key role in coordinated multidisciplinary efforts to address the AMR crisis [15]. 

1.1. Structure clinical development of antibacterial agents  

 It is time-consuming and resources to produce new medications since thousands of molecules that are taken 

from already-approved medications or mechanisms must be synthesized. After that, toxicity and preliminary 

activity screening are conducted to find one or two possible candidates. As per the WHO's yearly assessment of 

the pipeline of pharmaceuticals, the current advancement in novel antibacterial therapies is insufficient to tackle 

the swift rise in antibiotic resistance. Eighteen antibiotics have been licensed and made available between 2014 

and the end of 2021, one of which is for the management of TB that is extremely drug-resistant (Table 1). 

Table 1: Antibiotics approved between 2014 and 2021 

         

1. Drug 2. Target 

pathogen 

3. Class 4. Approv

al year 

5. Approv

ed by 

6. Dalbavancin  7. Gram‑positi

ve pathogens  

8. Glycopeptide  9. 2014  10. US FDA; 

EMA  

11. Tedizolid  12. Gram‑positi

ve pathogens  

13. Oxazolidinone  14. 2014  15. US FDA; 

EMA  

16. Oritavancin  17. Gram‑positi

ve pathogens  

18. Glycopeptide  19. 2014  20. US FDA  

21. Ceftolozane/tazobacta

m  

22. β‑lactamase 

enzyme producing 

bacteria  

23. β‑lactam/β‑lactam

ase inhibitor  

24. 2014  25. US FDA; 

EMA  

26. Cefazidime/avibactam  27. CRE  28. β‑lactam/β‑lactam

ase inhibitor  

29. 2015  30. US FDA; 

EMA  

31. Isavuconazonium  32. Antifunga

l  

33. Triazole  34. 2015  35. US FDA  

36. Delafloxacin  37. Gram‑positi

ve pathogens  

38. Fluoroquinolone  39. 2017  40. US FDA; 

EMA  

41. Vaborbactam/meropen

em  

42. CRE  43. β‑lactam/β‑lactam

ase inhibitor  

44. 2017  45. US FDA; 

EMA  

46. Plazomicin  47. CRE  48. Aminoglycoside  49. 2018  50. US FDA  

51. Eravacycline  52. CRE  53. Tetracycline  54. 2018  55. US FDA; 

EMA  

56. Omadacycline  57. MRSA and 

CRE  

58. Tetracycline  59. 2018  60. US FDA  

61. Relebactam + imipenem/ 

Cilastatinilastatin  

62. CRE, and 

potential activity for 

CRPA  

63. β‑lactam/β‑lactam

ase inhibitor  

64. 2019  65. US FDA; 

EMA  

66. Lefamulin  67. MSSA  68. Pleuromutilin  69. 2019  70. US FDA; 

EMA  

71. Pretomanid  72. XDR‑TB  73. Nitroimidazole  74. 2019  75. US FDA; 

EMA  

76. Lascufloxacin  77. Gram‑positi78. Fluoroquinolone  79. 2019  80. PMDA  
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ve pathogens  

81. Cefiderocol  82. CRAB, 

CRPA, CRE  

83. Siderophore 

β‑lactam (cephalosporin)  

84. 2019  85. US FDA; 

EMA  

86. Levonadifloxacin  87. Gram‑positi

ve pathogens  

88. Fluoroquinolone  89. 2020  90. CDSCO  

91. Contezolid  92. MRSA  93. Oxazolidinone  94. 2021  95. US FDA; 

EMA; China  

Sixteen antibiotics were authorized by the Chinese National Medical Products Administration (contezolid), the 

European Medicines Agency, the US Food and Drug Administration (FDA), the Central Drugs Standard Control 

Organization of the Government of India, and the Pharmaceuticals and Medical Devices Agency (Japan) 

approved one. Furthermore, only lefamulin and vaborbactam have updated MOA. The remaining antibiotics are 

classified into recognized classes, such as aminoglycosides (1/16), oxazolidinones (2/16), glycopeptides (2/16), 

and tetracyclines (2/16), β-lactam/β-lactamase inhibitors (3/16), nitroimidazoles, and fluoroquinolones (3/16) 

[16].   

The following are examples of resistant to carbapenem: extensively drug-resistant tuberculosis (XDR-TB), the 

methicillin- resistant strain of Staphylococcus aureus known as MRSA, the methicillin-susceptible strain known 

as MSSA, and carbapenem- resistant crab Acinetobacter baumannii, Pharmacy and Medical Devices Agency, or 

PMDA, EMA European Medicines Agency, the FDA Food and Drug Administration and CDSCO Central Drugs 

Standard Control Organization. 

β-lactam siderophore (1/16), and triazoles (1/16) (Figure. 1). WHO reports show that there were 42 new 

therapeutic agents in total in 2017 (of which 33 were medicines that target biological agents and bacterial 

priority pathogens, and 59 in 2021 (of which 27 were antibiotics and 32 were biologicals)  . This suggests that 

the development of biologicals—such as monoclonal antibodies, phage endolysin, polyclonal antibodies, etc. 

Has accelerated recently relative to the development of traditional antibiotics. The increasing need for 

innovative antibacterial agents with fresh targets and mechanisms of action led to the development of these 

biologicals. These biologicals have helped to advance. 

a change in emphasis among developers from focusing on broad-spectrum treatments to concentrating on a 

single pathogen. WHO guidelines, however, only consider six includes I-III Phase clinical trials and novel 

medication applications studies, there are 27 antibiotics to be novel medications [17]. When treating ailments 

brought on by Gram-negative bacteria, they were noticeably safer and more promising combinations even 

though Almost half remained. combinatorial β-lactam/β-lactamase inhibitors [18]. Only three drugs are now 

accessible therapeutically to cure Gram-negative bacterial infections that are extremely resistant to drugs: 

ceftazidime/avibactam (2019), 2017 saw the return of polymyxins to the Chinese market, and tigecycline (FDA-

approved in 2005 and available in China since 2010). 
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Figure 1 

The state of developing novel antibiotics (b) and the pipeline (a). Before being approved, novel medications 

found in laboratories must pass numerous stages of development, including investigations into new drugs 

(INDs), clinical trials, and new drug applications (NDAs) processes. Non-traditional chemicals include Products 

based on nucleic acids (n = 4), peptides with indirect action (n = 2), biologics (antibodies or other), 

immunomodulators (n = 7), small molecules with indirect action (n = 23), and huge molecules (n = 19), and 

microbiome-modifying compounds (n = 1). 

1.2. Commonly employed AI algorithms for antimicrobial resistance 

In Table 1 for AMR, we examined the most popular AI methods, such as artificial neural networks (ANN), 

support vector machines (SVM), random forests (RF), decision trees (DT), and naïve Bayes (NB). 

Table 2: AMR algorithm comparison using popular AI algorithms. 

Benefits and drawbacks of the method Learning 

speed 

Interpretation 

NB: Quick and simple to use; appropriate for datasets containing missing values. 

Every 

aspect must, nevertheless, stand-alone. 

1 4 

DT: Although decision tree results are easily interpreted, their applicability to 

datasets with missing values varies with tree complexity. 

2 1 

RF: This approach can handle a wide range of features and works well with huge 

data sets. It is not particularly sensitive to anomalous data, though. 

4 3 

SUM: Despite being extremely sluggish and requiring the user to provide numerous 

parameters, SVM may handle complex issues by utilizing kernel functions. 

5 5 

ANN: Multiple layers of a perceptron can be used by an ANN to learn a wide range 

of complicated issues. Accuracy will rise with increased model depth, although 

learning may go extremely slowly. 

5 5 
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These approaches' from 1 to 6, speed and interpretability are graded, with 1 being the best.[19]. 

1-Naïve Bayes 

The Bayes theorem forms the basis of the Naïve Bayes classification method, which makes separate 

assumptions for every feature[20]. The input/output joint probability distribution for a training dataset is 

computed. Using the Bayes theorem, we may ascertain which output, y, has the highest posterior probability 

given a particular input x: 

 

The input space defines the random vector, and the output space defines the random variable. indicated by X by 

Y, and the class label is represented by c. 

To track AMR, recent research has generally used the Naïve Bayes model [21, 22]. Rezaei- Hachesu and his 

colleagues for instance, employed a priori and naïve Bayes methods to identify the resistance factor and extract 

resistant patterns [22]. Furthermore, Choisy and his colleaguesestimated the likelihood that AMR-related 

unsuccessful therapy using Naïve Bayes [23]. 

2-Decision tree 

Typically, the decision tree [24] is employed in classification. A straightforward decision tree is used in Figure 

1A to separate a dataset into three classes. Three steps are often included in a decision tree's learning process: (1) 

feature selection, (2) formation of decision trees, followed by their trimming (3) [19]. ID3, C4.5, and CART 

[25,26]].  provide the majority of the fundamental basis for these phases [27]. 

 

 
 

𝑛 

𝑦 = 𝑓(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑃(𝑦 = 𝑐𝑘) 𝖦 𝜌(𝑋(𝑖) = 𝑋(𝑖)|𝑌 = 𝐶𝑘) 
𝑐𝑘 

𝑖= 
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Figure 2: (A) A straightforward decision tree model that uses two features to separate a dataset into three classes. 

(B) The random forest algorithm's schematic representation. 

A common method for allocating medical resources and estimating the burden of antimicrobial resistance 

resources correctly [28], [29]. When estimating healthcare consumption and costs for 

 antimicrobial resistance (AMR), Reynolds and his colleagues for instance, used a DT model [30]. This shows 

that lowering AMR or improving antibiotic selection can result in significant cost savings. 

Shorter treatment durations and lower overall dosages were achieved by Voermans and his colleagues used a 

DT model based on procalcitonin (PCT) [31] to direct the administration of antibiotics [11]. 

3-Random forest 

To increase accuracy and reliability, the ensemble method of Random Forest uses numerous decision trees [32]. 

As Fig. 2B illustrates, it makes use of two important ideas rather than just averaging the forecast outcomes of all 

trees, which would lead us to refer to it as "forest". First, certain samples will be utilized more than once in a tree 

since they are selected at random from the training dataset. The random forest often converges to a decreasing 

generalization error as the number of trees rises; yet, the effectiveness of a single tree inside it may be diminished 

because the other subset of features is random [33]. Antibiotic combination prediction has long been a focus of 

random forest models. Using chemogenomic data and orthology, for instance, Chandrasekaran and his colleagues 

utilized a RF model [34] to forecast a powerful mix of antibiotics treatment. This model performs well in 

generalization (AUC for synergy = 0.79),It has a low computational complexity and a straightforward, regular 

structure (n2/2). Using the chemical fingerprint, Mason and his colleagues increased the ability to forecast 

previously stated models. as a feature because chemogenomic data are insufficient [35, 36]. 

4-Support vector machine 

An algorithm known as the Support Vector Machine (SVM) for binary classification [37] divides samples into 

distinct classes by locating a dividing hyperplane in the sample space (Figure 3). 

 

Figure 3: A dataset is divided into two classes using a basic support vector machine [37]. 
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We may whether or not the training set can be divided linearly or almost linearly, use either soft margin 

maximization or hard margin maximization to generate a linear SVM.: 

𝑓(𝑥) = 𝑠ⅈ𝑔𝑛(𝑤𝑇𝜔 + 𝑏) 

where the distance between the origin and the hyperplane is given by the displacement term, b, and the normal 

vector, ω. In the event that the training set cannot be divided linearly, the kernel function and soft margin 

maximization can be employed. to produce a nonlinear SVM. 

𝑓(𝑥) = 𝑆ⅈ𝑔𝑛(𝜔𝑇𝜙(𝑥) + 𝑏) 

ϕ is a kernel function. 

To forecast AMR phenotypes, such as "resistant" or "susceptible," recent research has frequently used SVM 

models [[38], [39]. Using SVM models, for instance, Her and his colleagues predicted if E. coli is resistant to 

drugs [38]. The model's average accuracy of predictions was up to 0.95 (based on the AUC), according to the 

results. Furthermore, Liu and colleagues utilized Support Vector Machines Tetracycline, ampicillin, 

sulfisoxazole, trimethoprim, and enrofloxacin are the five drugs whose resistance was examined using support 

vector machines (SVM). [39]. The findings indicated that the model's accuracy was 90% or higher. Regarding 

AMR monitoring and medical diagnosis. we therefore view SVM models as promising instruments. 

5-Artificial neural network 

 

Figure 4: An artificial neural network neuron [40]. 

 

Artificial neural networks use layers of interconnected, weighted computer units, or "neurons" (Figure 4)—

mathematical abstractions to transfer information [40]. These networks are based on loosely modeled human brain 

neurons. Equation 4 provides a mathematical description of the neuron's output. 

 

𝑛 

𝑦 = 𝑓 ∑ 𝜔𝑖𝑥𝑖 + 𝑏) 
𝑖=1 
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Neural network training algorithms reduce weights ωi and biases b's activation function. Gradient descent is 

typically used to achieve this. 

 

Of them, the activation function is denoted by f, the learning rate by η, and the weight by ω. 

Among the ANN was recently deployed by Stokes and his colleagues deep learning, to identify new medicines 

without making any presumptions beforehand [41]. In animal tests, these compounds have been shown should 

possess antimicrobial qualities against a variety of infections. Next, we will enhance current compounds and 

create new antibiotics using a deep-learning approach, which may represent a paradigm shift in the field of 

antibiotic development. 

2. AI Assistance Techniques for AMR 

Fighting antibiotic resistance involves several critical components, including early infectious disease detection, 

identifying infectious from non-infectious pathologies, and appropriate treatment of any effects. AI is crucial to 

this global challenge. AI approaches should possess antimicrobial qualities against a variety of and associated 

trends in susceptibility patterns, such as the creation of antibiograms and the subsequent individualized, AMR 

prediction models based on machine learning (ML) may prove highly beneficial[42]. Through the use of this 

method, Yelin and his colleagues examined more than 0.7 million UTIs were found in the community throughout 

10- year longitudinal dataset, and discovered a strong association between AMR and patient demographics, urine 

culture history, and antibiotic use in the past. Following examinations, they created an AMR prediction model 

based on machine learning and detailed the high-risk UTI bugs along with their AMR patterns [43]. Figure 5 

describes the application of deep sequencing AI models. 
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Figure 5: Gene-sequencing model with deep antibiotic resistance 

2.1 Artificial Intelligence Providing Intensive Care Unit (ICU) Patient Treatment 

ICUs are critical environments for the use of artificial intelligence, and numerous avenues for doing so have been 

investigated. Using no administrative AI techniques, a vast amount of data included in electronic patient records 

has been examined. Numerous AI algorithms have been developed to identify important patient outcomes [44] 

and extract important data from an individual's outline [45]. Algorithms related to administered AI have proven 

useful in radiography, pathology, and histology due to their proficiency in automated example recognition [46]. 

Artificial intelligence, in line with mechanical technology, is widely used in many medical fields [47], 

particularly in cardiology and surgery [48], oncology to classify cancer types and stages of development[49], and 

identification of heart failure or arrest [50]. 

Even yet, research has successfully assessed AI's application in the care of critically ill patients [51], even though 

its usage in ICUs is still in its infancy. Numerous artificial intelligence the length of hospital stays and 

readmission rates have been examined using (AI) systems rates in intensive care units (ICUs), death rates, and the 

predictors of unforeseen illnesses like sepsis. In prior work [52], an AI-based technique to predict hospital 

admission days and patient survival was built using data from 14,480 patients. Given a longer stay, the region 

beneath the Curve of the Model (AUC) was 0.82. In comparison, the findings of clinical research showed that 

physicians' prognostication of the duration of hospitalization in the critical care unit was only about 55% accurate 

[53]. The duration of stay in the ICU was accurately predicted by a hidden Markov framework applied to 

physiological values obtained within the first 48 hours after ICU admission [54]. 

2.2 AI Models Previously Used in ICUs about Infections and Antimicrobial Resistance 

In ICU, patients' critical conditions necessitate a prompt and accurate evaluation of textual inputs that are high-

dimensional but raw, statistics, photographs, and other data. Furthermore, it is necessary to ascertain complex, 

nonlinear relationships between the data. Patterns in data have been represented as mathematical equations using 

a variety of statistical approaches [54]. A "best-fit line" is suggested by linear regression. Deep learning (DL) 

tackles complex medical data like a physician would, painstakingly evaluating the available data to reach a 

logical conclusion rather than reducing the connection to an equation in mathematics. Unlike a single physician, 

DL can capture and assess multiple inputs at once, enabling the creation of prediction models based on the 

intended outcome. DL approaches, namely Utilized are the convolution the use of recurrent neural networks 

(RNN), deep belief networks (DBN), and neural networks (CNN) intensive care units (ICUs) with other AI 

techniques linked to healthcare. 

To anticipate the results Based on a high-quality database containing 2177 ICU patients, Steenkiste and his 

colleagues  (2019) used a temporal computational model of blood culture tests that included a bidirectional long 

short-term memory (LSTM) and nine clinical factors monitored over time. When it's uncertain how long has 

passed between an expected event and the diagnosis, this kind of deep learning method works effectively. The 

network exhibited a typical area behind the curve (AUC) of 0.82. with 0.99 as the region beneath the operating 
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characteristic curve of the receiver. 

 Moreover, the outcomes demonstrated that forecasting several hours before the occasion may only be 

accomplished with a slight decrease in predictive strength [55].Using a dataset an RNN with LSTM was 

developed by Kaji and his colleagues  (2019) to forecast daily sepsis, myocardial infarction (MI), and the 

availability of the antimicrobial vancomycin (VA) for two weeks. patient's condition progressed. These models 

attained the expected AUCs for sepsis, MI, and VA treatment were 0.823, 0.876, and 0.833, respectively. The 

systems' attention maps illustrated the instances during which input elements had the biggest impact on the 

predictions, giving doctors some interpretability. Additionally, they displayed factors that served as stand-ins for 

clinical judgment, highlighting the challenge of developing clinical decision support systems with adaptable deep 

learning methods that are educated based on information from electronic medical documents (EHRs) [56]. 

In a study on the potential uses of AI in microbiology, Smith and his colleagues  (2020) found that whole- 

genome sequences (WGS) of bacteria, MALDI-TOF mass spectra, and images—microscopic and macroscopic—

may all profit from AI. Artificial Intelligence is beginning to be used in clinical microbiology and is currently 

providing laboratory staff with various diagnostic testing tools. It appears the quantity of AI instruments, the 

caliber and dependability of evaluations using AI software, including the incorporation Incorporating AI into the 

operations of medical microbiology laboratories with all rise soon. In the future, when AI frees up greater time to 

focus on diagnosing issues, difficult technical clarifications, and quality assurance in laboratories, it will be used 

more and more by microbiology technicians for preliminary testing and analyzing standard test findings for 

infectious diseases. The alterations will enhance the quality and efficacy of diagnostic bacterial testing, which is 

advantageous to our patients as well as the lab. [57]. 

3. Conclusion 

The development of antimicrobials has been sluggish, even though antimicrobial resistance, also known as AMR, 

seriously endangers the safety of humans has received significant attention. Between 2014 and 2021, just 18 new 

antibiotics were licensed; of those, only two have a unique MOA (mechanism of action). Two tendencies in the 

creation of novel antibiotics have been identified through analysis of antibiotics that are presently undergoing 

clinical development:1) from small synthetic chemicals to biologicals; 2) from wide to limited spectrum. AI has 

previously been used in drug repurposing, resistance mechanism prediction, and the identification of new AMPs 

and EOs (essential oils) to address the ever-increasing demands of the therapeutic community. This review shows 

that industrialized countries have effectively used AI in their healthcare infrastructures, with electronic data entry 

being the most prevalent example. It also sheds light on current AI practices surrounding antibiotic resistance 

worldwide. 

4. Conflict of Interests 

author does not any conflict of interest related to their research work. 

Reference 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2025) Volume 77, No  1, pp 50-65 

61 

[1] A. R. Collaborators, “Articles Global burden of bacterial antimicrobial resistance in 2019 : a systematic 

analysis,” vol. 399, 2022, doi: 10.1016/S0140-6736(21)02724-0. 

[2] A. Caneschi, A. Bardhi, A. Barbarossa, and A. Zaghini, “The Use of Antibiotics and Antimicrobial 

Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review,” Antibiotics, vol. 

12, no. 3, 2023, doi: 10.3390/antibiotics12030487. 

[3] S. Khalid et al., “Journal of Medicine , Surgery , and Public Health Antimicrobial resistance : Impacts , 

challenges , and future prospects,” J. Med. Surgery, Public Heal., vol. 2, no. March, p. 100081, 2024, 

doi: 10.1016/j.glmedi.2024.100081. 

[4] C. E. Flynn and J. Guarner, “Emerging Antimicrobial Resistance,” Mod. Pathol., vol. 36, no. 9, p. 

100249, 2023, doi: 10.1016/j.modpat.2023.100249. 

[5] J. A. Al Tawfiq, S. H. Ebrahim, and Z. A. Memish, “Preventing Antimicrobial Resistance Together : 

Reflections on AMR Week 2023,” J. Epidemiol. Glob. Health, vol. 14, no. 2, pp. 249–251, 2024, doi: 

10.1007/s44197-023-00178-1. 

[6] J. Denissen et al., “International Journal of Hygiene and Environmental Health Prevalence of ESKAPE 

pathogens in the environment : Antibiotic resistance status , community-acquired infection and risk to 

human health,” Int. J. Hyg. Environ. Health, vol. 244, no. June, p. 114006, 2022, doi: 

10.1016/j.ijheh.2022.114006. 

[7] D. Vijay, G. Angad, and D. Veterinary, “STUDY ON ANTIMICROBIAL USAGE , RESISTANCE 

AND RESIDUES IN DAIRY HERDS OF PUNJAB USING A ‘ ONE - HEALTH ’ APPROACH Guru 

Angad Dev Veterinary and Animal Sciences University,” 2022. 

[8] C. L. Ventola, “The Antibiotic Resistance Crisis Part 1 : Causes and Threats,” vol. 40, no. 4, pp. 277–

283, 2015. 

[9] M. I. Hutchings, A. W. Truman, and B. Wilkinson, “ScienceDirect Antibiotics : past , present and 

future,” Curr. Opin. Microbiol., vol. 51, no. Figure 1, pp. 72–80, 2020, doi: 

10.1016/j.mib.2019.10.008. 

[10] L. Katz and R. H. Baltz, “Natural product discovery : past , present , and future,” J. Ind. Microbiol. 

Biotechnol., vol. 43, no. 2, pp. 155–176, 2016, doi: 10.1007/s10295-015-1723-5. 

[11] G. Y. Liu et al., “Antimicrobial resistance crisis : could artificial intelligence be the solution ?,” Mil. 

Med. Res., pp. 1–23, 2024, doi: 10.1186/s40779-024-00510-1. 

[12] C. Fu and Q. Chen, “Jo ur na l P re f,” J. Pharm. Anal., p. 101248, 2025, doi: 

10.1016/j.jpha.2025.101248. 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2025) Volume 77, No  1, pp 50-65 

62 

[13] Z. Mariam, “Artificial intelligence in drug development : reshaping the therapeutic landscape,” 2025, 

doi: 10.1177/20420986251321704. 

[14] S. Aritra, C. Baghel, and S. Indu, “Harnessing the power of arti fi cial intelligence in pharmaceuticals : 

Current trends and future prospects,” Intell. Pharm., no. April 2022, 2025, doi: 

10.1016/j.ipha.2024.12.001. 

[15] A. M. Mohammed et al., “South African Journal of Chemical Engineering Enhancing antimicrobial 

resistance strategies : Leveraging artificial intelligence for improved outcomes,” vol. 51, no. August 

2024, pp. 272–286, 2025. 

[16] S. M. Hoy, “Contezolid : First Approval,” Drugs, pp. 1587–1591, 2021, doi: 10.1007/s40265-021-

01576-0. 

[17] L. L. Silver, N. Ohmagari, R. Kozlov, and S. Harbarth, “Analysis of the Clinical Pipeline of Treatments 

for Drug- Resistant Bacterial Infections : Despite Progress , More Action Is,” vol. 66, no. 3, pp. 1–20, 

2022. 

[18] N. I. Combinations, “crossm,” vol. 30, no. ii, 2021. 

[19] J. Lv, S. Deng, and L. Zhang, “Biosafety and Health A review of arti fi cial intelligence applications 

for antimicrobial resistance,” vol. 3, pp. 22–31, 2021, doi: 10.1016/j.bsheal.2020.08.003. 

[20] K. P. Murphy, “Naive Bayes classifiers Generative classifiers,” pp. 1–8, 2006. 

[21] A. Sakagianni et al., “Using Machine Learning to Predict Antimicrobial Resistance — A Literature 

Review,” pp. 1–18, 2023. 

[22] P. Rezaei-hachesu, T. Samad-soltani, S. Yaghoubi, and M. Ghazisaeedi, “International Journal of 

Medical Informatics The design and evaluation of an antimicrobial resistance surveillance system for 

neonatal intensive care units in Iran,” vol. 115, no. April, pp. 24–34, 2018. 

[23] M. Choisy et al., “Assessing antimicrobial misuse in small-scale chicken farms in Vietnam from an 

observational study,” pp. 1–10, 2019. 

[24] J. R. Quinlan, “Induction of Decision Trees,” pp. 81–106, 2007. 

[25] Y. Zhuang and C. Singh, “Learning a Decision Tree Algorithm with Transformers,” pp. 1–24, 2024. 

[26] J. R. Quinlan, “J. R. Quinlan,” vol. 5, no. Quinlan 1993, 2006. 

[27] M. Segal and M. Biostatistics, “Tree Depth in a Forest.” 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2025) Volume 77, No  1, pp 50-65 

63 

[28] N. R. Naylor, N. Zhu, M. Hulscher, A. Holmes, R. Ahmad, and J. V Robotham, “Is antimicrobial 

stewardship cost-effective ? A narrative review of the evidence,” Clin. Microbiol. Infect., vol. 23, no. 

11, pp. 806–811, 2017, doi: 10.1016/j.cmi.2017.06.011. 

[29] N. R. Naylor et al., “Estimating the burden of antimicrobial resistance : a systematic literature review,” 

pp. 1–17, 2018. 

[30] C. A. Reynolds, J. A. Finkelstein, G. T. Ray, M. R. Moore, and S. S. Huang, “Attributable healthcare 

utilization and cost of pneumoniae due to drug-resistant Streptococcus pneumoniae : a cost analysis 

Attributable healthcare utilization and cost of pneumoniae due to drug-resistant Streptococcus 

pneumoniae : a cost analysis,” 2014. 

[31] A. Shajiei et al., “Impact of reduced antibiotic treatment duration on antimicrobial resistance in 

critically ill patients in the randomized controlled SAPS-trial.” 

[32] A. Liaw and M. Wiener, “Classification and Regression by randomForest,” vol. 2, no. December, pp. 

18–22, 2002. 

[33] L. E. O. Breiman, “Random Forests,” pp. 5–32, 2001. 

[34] S. Chandrasekaran, M. Cokol-cakmak, N. Sahin, K. Yilancioglu, and H. Kazan, “Chemogenomics and 

orthology-based design of antibiotic combination therapies,” pp. 1–12, 2016, doi: 

10.15252/msb.20156777. 

[35] R. J. Nichols et al., “Resource Phenotypic Landscape of a Bacterial Cell,” Cell, vol. 144, no. 1, pp. 

143–156, 2011, doi: 10.1016/j.cell.2010.11.052. 

[36] I. Karakoc, S. Meral, N. Kuru, A. Bender, and M. Cokol, “Prediction of antibiotic interactions using 

descriptors derived from compound molecular structure,” 2017. 

[37] J. Vandewalle, “Least Squares Support Vector Machine Classifiers,” pp. 293–300, 1999. 

[38] “No Title.” 

[39] Z. Liu, D. Deng, H. Lu, J. Sun, L. Lv, and S. Li, “Evaluation of Machine Learning Models for 

Predicting Antimicrobial Resistance of Actinobacillus pleuropneumoniae From Whole Genome 

Sequences,” vol. 11, no. February, pp. 1–7, 2020, doi: 10.3389/fmicb.2020.00048. 

[40] R. Dastres, M. Soori, A. Neural, N. Systems, and I. Journal, “Artificial Neural Network Systems To 

cite this version : HAL Id : hal-03349542,” vol. 21, no. 2, pp. 13–25, 2021. 

[41] J. M. Stokes et al., “Article A Deep Learning Approach,” Cell, vol. 180, no. 4, pp. 688-702.e13, 2020, 

doi: 10.1016/j.cell.2020.01.021. 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2025) Volume 77, No  1, pp 50-65 

64 

[42] J. Lv, S. Deng, and L. Zhang, “Biosafety and Health A review of arti fi cial intelligence applications 

for antimicrobial resistance,” vol. 3, pp. 22–31, 2021. 

[43] I. Yelin et al., “tract infections,” vol. 25, no. 7, pp. 1143–1152, 2020, doi: 10.1038/s41591-019-0503-

6.Personal. 

[44] R. Steinkey, J. Moat, V. Gannon, A. Zovoilis, and C. Laing, “Application of artificial intelligence to 

the in silico assessment of antimicrobial resistance and risks to human and animal health presented by 

priority enteric bacterial pathogens,” vol. 46, no. 6, pp. 180–185, 2020. 

[45] E. Elyan, A. Hussain, A. Sheikh, and A. A. Elmanama, “Antimicrobial Resistance and Machine 

Learning : Challenges and Opportunities,” IEEE Access, vol. 10, pp. 31561–31577, 2022, doi: 

10.1109/ACCESS.2022.3160213. 

[46] M. N. Anahtar, J. H. Yang, and S. Kanjilal, “Applications of Machine Learning to the Problem of 

Antimicrobial Resistance : an Emerging Model for Translational.” 

[47] D. Yakar, Y. P. Ongena, T. C. Kwee, and M. Haan, “Do People Favor Artificial Intelligence Over 

Physicians? A Survey Among the General Population and Their View on Artificial Intelligence in 

Medicine,” Value Heal., vol. 25, no. 3, pp. 374–381, 2021, doi: 10.1016/j.jval.2021.09.004. 

[48] C. Pharmacology, “Artificial Intelligence Technologies in Cardiology,” 2023. 

[49] V. Baxi, R. Edwards, M. Montalto, and S. Saha, “Digital pathology and arti fi cial intelligence in 

translational medicine and clinical practice,” Mod. Pathol., vol. 35, no. 1, pp. 23–32, 2021, doi: 

10.1038/s41379-021-00919-2. 

[50] T. M. Rawson, R. Ahmad, C. Toumazou, P. Georgiou, and A. H. Holmes, “Artificial intelligence can 

improve decision-.” 

[51] T. Wang, X. Wan, and S. Yao, “Better AMR-To-Text Generation with Graph Structure 

Reconstruction,” pp. 3919–3925. 

[52] L. Hadjadj, M. A. Syed, J. Bushra, S. A. Abbasi, J. Rolain, and B. Daltonics, “Letter to the Editor,” vol. 

20, no. X, pp. 20–21, 2019, doi: 10.1089/sur.2019.005. 

[53] W. U. Hospital, “Comment COVID-19 drug practices risk antimicrobial resistance evolution,” pp. 

2020–2021, 2020, doi: 10.1016/S2666-5247(21)00039-2. 

[54] U. Fanelli et al., “Role of Artificial Intelligence in Fighting Antimicrobial Resistance in Pediatrics,” pp. 

1–12, 2020. 

[55] F. Petropoulos et al., “Forecasting : theory and practice,” Int. J. Forecast., vol. 38, no. 3, pp. 705–871, 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2025) Volume 77, No  1, pp 50-65 

65 

2022, doi: 10.1016/j.ijforecast.2021.11.001. 

[56] D. A. K. Id et al., “An attention based deep learning model of clinical events in the intensive care unit,” 

pp. 1–17, 2019, doi: 10.5281/zenodo.1473691. 

[57] K. Mikrobiyoloji, L. Yapay, and Z. Uygulamaları, “REVIEW / DERLEME Artificial Intelligence 

Applications In Clinical Microbiology Laboratory,” vol. 9, no. 1, 2024, doi: 10.58854/jicm.1404800. 

 


