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Abstract 

Surgical simulation covers a set of very large fields. Medical physics simulation, which aims to virtually 

reproduce the behavior of organic tissues, tries to stick, as far as possible, with reality. This last field poses 

many concrete problems currently very incompletely resolved, and the extreme mechanical complexity of 

living tissues. The mechanical interaction between organs, the large number of different tissues and 

topologies, make the physical simulation of a human organism totally utopian at the present time. The best 

scientific results for the moment manage to simulate this or that type of organ, with, in terms of interaction, 

certain simple operations, such as primitive cutting of organs. These organs are modeled by meshes whose 

resolution depends on the cutting zone: the mesh associated with this zone must be defined at several 

scales to extract all or part of the organ considered. In addition, taking into account any cuts previously 

made in the vicinity of the zone considered remains an open problem that needs to be resolved. It leads to 

modifications of the topological model associated with the mesh. Our study therefore focuses on the 

adaptive resolution subdivision of triangles and tetrahedra in a mesh. Operations must preserve mesh 

consistency and must be robust. We propose a topology-based model that meets this need. We define and 

implement adaptive resolution subdivision operations in a triangular and tetrahedral mesh.  
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1. Introduction 

Medical imaging is irreplaceable today, for diagnosis as well as for the preparation and follow-up of 

surgical interventions. The various techniques that already exist and those that continue to appear regularly 

make it possible to give a very detailed view of the organs, and increasingly precise information on the 

pathologies. X-ray, scanner, magnetoencephalography (MEG), electroencephalography (EEG), 

angiography, these technologies each have their advantages and limitations. In addition to these simulation 

methods helping the surgeon in his diagnosis and during an operation, it has proven necessary to act 

upstream of the surgeons' decision by offering tools allowing them to more precisely assess a problem, 

train before surgery, and even contribute to their training. These are the surgical simulators. 

Medical imaging is irreplaceable today, for diagnosis as well as for the preparation and follow-up of 

surgical interventions. The various techniques that already exist and those that continue to appear regularly 

make it possible to give a very detailed view of the organs, and increasingly precise information on the 

pathologies. X-ray, scanner, magnetoencephalography (MEG), electroencephalography (EEG), 

angiography, these technologies each have their advantages and limitations. In addition to these simulation 

methods helping the surgeon in his diagnosis and during an operation, it has proven necessary to act 

upstream of the surgeons' decision by offering tools allowing them to more precisely assess a problem, 

train before surgery, and even contribute to their training. These are the surgical simulators.  

In preoccupying field as surgery, interactive manipulation and realistic rendering of the shape and behavior 

of organs in the surgical simulator proves extremely useful.  

However, the current simulation engines are handicapped by the fact that they suffer from inconsistent and 

not very robust models with regard to the operations applied to them: Topological models meet this need. 

In laparoscopy, for example, common interventions involve cutting and ablation. In our work, we talk 

about subdivision and extraction operations.  

In an operation involving the extraction of organs, it is important to know at the right time, in the right 

place, which part of the body to extract.  

The model should therefore be able to allow a recursive cutting of organs, up to the zone deemed necessary 

for the extraction, and above all, taking into account any cuts that would have been made in the vicinity of 

said zone.  

In this case, we are talking about simulation with adaptive resolution which, among other things, makes it 

possible to manage the best compromise between precision and speed of calculation which is lacking in 

current simulators. 

Our study therefore consists in proposing a model using the adaptive resolution, and based on the topology 

to manage the recursive cuts of the parts of a meshed organ in triangles (Dimension 2) or in tetrahedrons 

(Dimension 3) and reconstructed from geometric data. 
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2. Survey 

The simulation of topological modifications such as cutting of deformable bodies has been the subject of 

several researches for several years. A few modeling approaches have been proposed, most of them are 

based on finite element models or on mass-spring models [1]. We classify and examine in this part the 

different approaches proposed. Various approaches have been suggested for solving the problems of 

simulating object cutouts. In general, the bodies are most of the time modeled in the form of a mesh made 

up of unique elements such as tetrahedrons or more complex and different elements. We can classify 

modeling approaches into three categories. 

2.1 Approach by deleting volumes in the model 

Cotin addresses in his doctoral thesis [2] the problems of cutting and tearing. After describing the 

simulated body as a set of tetrahedrons whose behavior is well identified in an autonomous way, he 

proposes to remove tetrahedrons. By removing a large number of tetrahedrons, we obtain an incision, even 

a cutting of the object. 

The destruction approach proposed by Cotin has the advantage of being simple to implement but has the 

disadvantage of destroying volume, therefore matter, and therefore causing a loss of mass.  

2.2 Approach by separation of adjacents volumes 

This method preconizes the separation of two adjacent volumes or a set of adjacent volumes, which causes 

an incision. In practice, this amounts to split the common face of the two neighbors. The initial face was 

internal, the two final faces are generally on the surface of the body. 

This solution, simple to implement, suffers from the fact that the incision must necessarily be operated on 

an area between two volumes, but not inside the volumes themselves.  

This leads to a lack of precision during the cutting simulation. The final incision follows borders of the 

mesh, with undesirable effects such as stair steps for example, as illustrated at  Figure 1. 

 

Figure 1: separation of faces of a mesh object by rectangles and crossed by a tool. 
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2.3 Approach by cutting elementary volumes 

given the shortcomings encountered by previous approaches, some authors seek to make it possible by 

incising directly through the volumes of the mesh. Bielser [3] worked on the specific problem of cutting a 

volumic and interactive dynamic model. It uses a tetrahedral mass-spring mesh as a physical model. 

 

Figure 2: generic "pre-cut" tetrahedron proposed by Bielser [3]. 

To model cuts, he lists all the possible ways for a tool (a segment for example) to cross a tetrahedron, 

knowing that the segment can cross the tetrahedron right through or move forward then backward, cutting 

only one corner of the tetrahedron (case of a half-turn of the cutting maneuver). Inspired by this study, he 

proposes a data structure based on pre-cut tetrahedron (voir Figure 2). Cette approche assure la 

conservation de la masse. This approach ensures mass conservation. 

Notwithstanding the fact that Bielser's method is quite realistic because it solves the problem of geometric 

precision, we note however some drawbacks, including the increase in the number of primitives to be 

simulated, which is a constraint for real-time simulations [4]. Moreover, as tetrahedra are pre-cut, they can 

only be cut once. We also note the appearance of arbitrarily small volumes leading to mechanical 

instability after cutting (poorly conditioned equations because the masses involved become lower, the 

elastic stiffness greater and the cut elements do not have homogeneous dimensions). Moreover, if the mesh 

is regular, the cutting process does not preserve the nature of the elements (tetrahedra cut into more 

complex volumes).  

[5] proposed a subdivision approach based on point clouds. It preserves the overall geometry of the model, 

but has the disadvantage of not managing the topological aspect of the models, which is important when 

we simulate surgical operations. 

Although “volume cutting” type approaches have the advantage of providing better geometric precision, 

they nevertheless have a major problem of instability, and therefore a lack of control. The “removal” type 

approaches proposed have the advantage of being simple to implement. However, they destroy matter 

(non-respect of the law of conservation of mass), require the use of fairly fine meshes to remain realistic. 

“Neighborhood deletion” type approaches lack geometric precision, despite the fact that they are quite 

simple to implement. Moreover, none of the proposed models offers the possibility of carrying out several 

modification operations. But if we want a polyvalent model, it must be possible to destroy neighborhood 
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relations to simulate incisions but also to remove elements for the destruction of material. However, these 

changes must be offered with controllable precision. 

Considerations mentioned lead us to explore a new way, and we present in the following section tools that 

we need to explore that new way. 

3. Basic tools of our approach 

Our objective is to simulate topological modification operations such as incisions, tears or cuts, while 

keeping the model we are handling consistent, and therefore, to propose a model with controllable 

geometric precision. In the following, we present cellular topological models, then the MOKA modeler. 

3.1 Topological models 

Topological models presented here make possible the representation of subdivided objects, i.s. partitioned 

into cells of different dimensions : vertices, edges, faces, volumes, etc. 

Topological models are classified according to different criteria: 

 Cell type : 

 cells of regular shape (triangle or rectangle for example); 

 cells of any shape.  

  Type of cell assembly, which may or may not support multi-incidence. We distinguish in 

particular the models representing: 

 manifolds, orientables or not, with or without boundary; 

 Cellular complexes (non-manifold). 

 Glossary : 

We present in this glossary, notions that we regularly manipulate in topological models. 

Neighborhood relationship: We use the terms adjacency relation between two cells of the same 

topological dimension, and incidence relation between two cells of different topological dimensions [6]. 

Incidence: Two cells C1 and C2 are incident if and only if they are of different dimensions, and C1  C2   

 . 

Adjacency: Two cells C1 and C2 are adjacent if and only if they have the same dimension i, and if there is 

a cell C of dimension i - 1 incident to C1 and C2. 

Manifold: an n-dimensional manifold can be constructively defined as a set of n-dimensional cells, glued 

together along the n−1-dimensional cells of their edges, in such a way that an n−1-dimensional cell is 
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incident to at most two n-dimensional cells.. 

Involution: An involution α: B   B is a bijection on a set B which is its own inverse:            . 

La notation bα signifie que l’on applique l’involution α sur un élément de B. En d’autres termes, bα est 

identique à α(b). 

Embedding: it allows to add informations to various cells.. 

 G-map 

Also called generalized maps, they are ordered cellular models based on elements called darts [7]. Their 

main advantage is that their definition is homogeneous in all dimensions and that they make it possible to 

represent quasi-manifolds, orientable or not. Cells are implicitly represented by a set of strands linked 

together by involutions called α. Neighborhood relations and modeling operations are based on darts and α 

involutions.  

Definition 1 (Generalized map): 

A generalized map of n-dimension, n≥0 (or n-G-map) is an algebra 

               défined by:  

 B is a finite set of abstract objects called darts ; 

                  involutions on B ; 

                                  is an involution. 

 

Figure 3: exploded representation of a 3-G-Map. 

The notion of cell of dimension i can be found in an n-G-carte through the more general notion of orbit. 

Definition 2 (Orbit): 
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                  ane n-G-map, b B a dart anda sub-set                          

The orbit <α1, …, αk>(b) is the set of darts b’ such that there exists any composition c of α1
’
,…, αk

’
 such 

as bc=b’. This characterizes the set of reachable darts from b by composition of involutions of {α1,…, αk}. 

 

Figure 4: volumes (orbit <α0, α1, α2>). 

3.2 MOKA : A topologically based geometric modeler 

Developed by Frédéric Vidil and Guillaume DAMIAND from XLIM-SIC Laboratory [8], MOKA is a 3D 

topological based geometric modeler. This modeler is based on the generic 3-G-map kernel. It allows the 

creation and manipulation of 3D objects using many operations. This kernel is generic because the 

different applications that can use it all have different specific needs. It therefore allows the modeling of 

quasi-manifolds, orientable or not, of dimension less than or equal to three. It was developed in C++, in 

order to obtain an easily modifiable and extensible code. 

We briefly explain the overall structure of this kernel. It includes three main classes : 

 the Gmap class is the base class for declaring a 3-G-map, 

 the  Dart class represents a dart, 

 the Attribute class represents an attribute associated with a particular orbit. 

Note that the attribute associated with an orbit can be geometric, like the coordinates of a 3d point that we 

associate with a vertex orbit, or a 2-G-map that we associate with a face embedding, but also other 

attributes of color, texture. . . This kernel makes it possible to associate any type of attribute with any orbit 

of the 3-G-map. A specific attribute is associated with a particular orbit. Several different attributes can be 

associated with the same orbit. For example, we can associate a face with a 2D surface, a color and a 

texture. These attributes are grouped in the Embedding class. Figure 5 shows the schema representing these 

classes, and how they are related. On this UML diagram, we have represented only the main fields so as 

not to go into technical details. 
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Figure 5: The UML schema of the 3G-map core, partial representation. 

 The Gmap class is mainly composed of a set of darts, but also has other attributes. The field 

used_orbits is an array of 16 booleans, which allows each orbit to know if it is immersed or not. 

This makes it possible not to perform a journey in order to look for an embedding, when we know 

that this orbit is not embedding. Finally, the used_marks field gives the boolean marks that are in 

use. The Gmap class has methods for requesting and reserving a free tag, and releasing a tag. Both 

of these methods will use and update the array. This class has a large number of methods, making 

it possible to create or delete strands, to sew or unsew these strands, with or without updating 

embeddings, methods to assign, delete or retrieve an Attribute for a particular orbit. Other 

methods make it possible to test whether a strand is marked, to mark it or to demarcate it. These 

are the main methods that the user can call. There are of course several other methods, some of 

which are private and used internally to, for example, update the embeddings, or test if two strands 

belong to the same orbit.  

 The Dart class has four pointers to represent the four α involutions in 3D and a list of Embedding 

carried by this dart. Each Embedding corresponds to a particular orbit. The boolean array 

used_orbit lets you know in O(1) if this dart carries an Embedding for an orbit. This avoids 

browsing the Embedding list unnecessarily. Finally the marks array contains the boolean marks of 

this dart. 

 The Embedding class contains an id_orbit field corresponding to an identifier of the orbit 

corresponding to this Embedding. It then contains the list of Attributes contained in this 

Embedding. 

 The Attribute class is a pure virtual class. The user desiring a particular attribute will create its 

class deriving from Attribute, and set its "behaviour". It is necessary, among other things, to give a 

different identifier to each Attribute, to define the Save and Load methods. This allows for 

example to write a generic save method in the Gmap class, which will use the Save method of the 

Attribute classes redefined by the user. 

We do not detail more about functionalities of this kernel. Its main asset is to be very generic. In addition, 

it transparently manages the use of any embedding, which allows a non-specialist user to use it without 
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worrying about this aspect. Its two main flaws are its slowness and the memory space occupied. Indeed, by 

its genericity, it carries out many tests in order to update all the possible embeddings, and the structure in 

list of lists for the attributes is expensive in memory space. But this kernel can be considered as a 

prototype. When a specific application requires a particular embedding, it is possible to specialize the 

kernel to take this embedding into account, and thus remove tests and attribute lists. We then obtain a 

specialized kernel, for which we can no longer plunge any orbit, but less expensive in terms of execution 

time and memory space. This kernel change can be made without any modification of the application 

sources, simply by keeping the same interface between the general version and the specialized version.  

4. Our hierarchical model 

In surgical simulation, the operation of organ incisions with a scalpel, for example, is a very complex operation 

to perform. In our case, given that the organ that we wish to incise is represented by a tetrahedral mesh, it is 

therefore a question for us to model an operation of subdivision of tetrahedra. This operation can be recursive 

and vary according to the need, it is for us here to be able to subdivide tetrahedra according to the need, and 

therefore so that it is defined at different scales and according to the desired zone. We propose in this part a 

model allowing to refine the resolution of a model to desired levels, by subdivision operation while preserving 

the integrity of the model. 

4.1  Definitions 

 Adaptive resolution : it designates in our paper the fact of considering several parts of a mesh in 

a “finer” way than others, to approach the shape of the simulated object as closely as possible. The 

goal is to choose, at the right time, in the right place, which resolution gives the best compromise 

between precision and speed of calculation. 

 Object resolution level : In adaptive resolution, any object is created at a certain resolution level. 

In this work, we associate this level with the object in the form of a natural whole number.  

Nous utiliserons quelques fois le diminutif « niveau » pour désigner le niveau de résolution. 

4.2 Problem analysis 

We want to subdivide a tetrahedron. We propose an approach which will allow us to obtain small 

tetrahedra resulting from the subdivision of a tetrahedron and which are similar to the tetrahedron from 

which they come from. 

A tetrahedron being made up of four faces (which are triangles), that faces are therefore concerned during 

a tetrahedron subdivision operation. It is therefore important to study the behavior of the triangles 

representing the faces of the tetrahedron. 

Suppose we want to subdivide a triangle into several triangles so that the resulting small triangles are 

similar to the triangle they come from. We can inspire by Loop diagram [9] as shown in Figure 6. 
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Figure 6: Loop schema. 

 We get 4 triangles from the initial triangle as shown in Figure 7. 

 

Figure 7: subdivision of a triangle. 

Subdividing a triangle would therefore amount to subdivide each of its edges into two, and inserting new 

ones. We find that initially, bα0=b1. After a subdivision of the triangle, bα0=b2. Dart  b would therefore 

have two images by the involution α0. This subdivision operation can be recursive, and so one dart could 

have a different image depending on the resolution involution. 

Suppose now that we want to subdivide one of the triangles resulting from the subdivision of our initial 

triangle as illustrated in  Figure 8. 

 

Figure 8: subdivision of the triangle at level 2. 
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The subdivision of the triangle T1 is not without topological repercussions on the triangle T2. In particular, 

this subdivision causes the subdivision of one of the edges of the triangle T2. We therefore observe that in 

a triangle mesh, the subdivision of a triangle has repercussions on the neighboring triangles. Recall that 

this subdivision operation is recursive. A similar observation is made when we want for example to 

subdivide a tetrahedron into several tetrahedra. 

It is therefore a question for us thereafter of proposing a topological model making it possible to refine the 

resolution of a model at the desired levels, by operation of subdivision; this subdivision must be applicable 

several times to the model, in a recursive way. The integrity of the model must be preserved, which 

implies, in particular, a management of topological neighborhoods in accordance with the resolution. 

4.3 Adopted approach 

Given that a tetrahedron is made up of four faces (triangles) and that each face is made up of three edges, 

each edge being made up of two strands, we suggest a strategy of modeling based on the study of the 

behavior of edges during a subdivision operation, then face, and finally tetrahedron. 

4.3.1 Edge adaptive resolution subdivision 

Our problem boils down to the subdivision of an edge at a given level of resolution k. We have seen that a 

strand could have several images by the involution α0. In order to manage this resolution during an edge 

subdivision, we define the map µa which associates to each strand the level of resolution of its edge by : 

µa : B→N 

       
       , where na is the resolution level of the edge of dart b. 

Remark Let b be a dart with edge resolution level na. Inserting a vertex on the edge corresponding to 

strand b induces the creation of two new strands b1 and b2 and the initial and new strands of the edge take 

as edge resolution level na+1 such that : 

   
      

                          
    

      
    

Notation    
   means the image of  b at level na by theinvolution   .  

Suppose Figure 9, where b’ is a dart such that     
     .  
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Figure 9: inserting a vertex on an edge. 

4.3.2 Face adaptive resolution subdivision 

Our problem boils down to the subdivision of a face into several faces at a given level of resolution nf 

given. In our case, it is a question of being able to subdivide a triangle into several uniform triangles by 

taking into account the topological neighborhood relations existing between the triangles. 

We subdivide the three edges of the face according to our principle of edge subdivision described 

previously. By then connecting the vertices thus created by inserting three new edges, we form four new 

small faces (triangles). 

Remark  Subdivision of a face induces insertion of new edges to connect the vertices created. In the 

principle of G-maps, in order to restore vertices, there will indeed be the creation of new edges (which we 

also call internal edges and their darts are called internal darts, the others being external darts) connected 

two by two by α2 involutions, as shown in Figure 10. 

 

Figure 10: triangle subdivision. 

We have seen that the subdivision of a face has influences on the adjacent faces. In this case, the face 

subdivision is made without really taking into account the adjacent faces and the modifications that these 

would have undergone over the subdivisions. We must therefore be able to identify a face whose edge had 
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already been subdivided in the case of an adaptation of the adjacent edge. 

To overcome this handicap, we then define the map µf  which, with each strand, associates the level of 

resolution of its face by : 

µf : B→N 

       
      , where nf is the the resolution level of the face of dart b. 

Theorem 1  Let B be the set of darts of a G-map. 

If µa designates the level of resolution of the edge of a dart, and µf the level of resolution of the face of this 

dart, then                   

In fact, subdivision of a face at level i induces the replacement of the face level of its darts by i. So for any 

dart b resulting from the subdivision of a face f, we have µf(b)=i. 

However, subdividing a face automatically results in the subdivision of its edges and the insertion of new 

edges. Subdividing an edge induces the replacement of the edge level of the darts affected by this edge 

subdivision by i. Thus, for any dart b resulting from the subdivision of each edge a, we have µa(b)=i. 

Inserting edges results in the creation of new darts which take as edge and face level i. Thus, for any dart b 

resulting from the insertion of each edge a, we have µa(b)=i.  

We deduce that if B is the set of darts of the face, µf(b)= µa(b)=i. 

Taking into account the neighborhood relations of the faces stated a little earlier in the paper, consider two 

neighboring faces F1 and F2 of common resolution level i and both having edges of resolution level i. The 

subdivision of F1 at level i+1 would result in the subdivision of an edge of F2 without F2 being 

subdivided, and the subdivision of this edge of F2 would result in the replacement of the edge level of the 

darts affected by the subdivision of this edge of F2 by i+1. The neighboring face F2 would have in this 

case certain darts of level i+1, whereas its own level is i. We will then have for any dart b resulting from 

the subdivision of this edge of F2, µf(b)=i et µa(b)=i+1, we have  µf(b) <µa(b). 

We deduce that if  B is the set of darts of our G-map,      µf   ≤ µa(b). 

Remarks  Let b be a dart of an edge A, and i a given level of resolution. Edge A is not subdivided at level i 

if µa(b) <i. 

 Any edge insertion or subdivision induces the modification of the darts affected by this insertion 

or subdivision. Indeed, during the insertion or the subdivision of an edge at a level i, new strands 

are created, and certain strands of levels i-1 are affected. It is therefore necessary to modify the 

vectors of image strands of all the strands concerned by the insertion or the subdivision of the 
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edge by adding to it at position i, the strand image by α0 of each of these strands. Moreover, taking 

into account the face adjacency relations stated above, the darts of the adjacent faces by α2 et α3   

undergo the same modifications if they had not yet been subdivided at level i. 

 When a face is subdivided at level i, all inner darts take as face and edge resolution level i. The 

outer darts of the resulting level i faces take as face resolution level i if they had not yet been 

subdivided at level i (i.s. if their current face level is less than i), and as edge resolution level i if 

their current edge level is less than i. Taking into account the face adjacency relations stated 

above, the darts of faces adjacent by α2 take as edge resolution level i if their current edge level is 

less than i. Edges of faces adjacent by α3 take edge resolution level i if their current edge level is 

less than i, and face resolution level i if their current face resolution level is less than i. 

4.3.3 Tetrahedron adaptive resolution subdivision 

The problem boils down to the recursive subdivision of a tetrahedron into several uniform tetrahedra, the 

subdivision operation being able to be repeated several times. It is therefore for us to perform the 

subdivision of a tetrahedral mesh. 

To achieve this tetrahedron subdivision, we start by subdividing the four faces of our tetrahedron by 

applying our face subdivision method stated above as shown in Figure 11. 

 

Figure 11: Subdivision des quatre faces d'un tétraèdre. 

Once the four faces of the tetrahedron have been subdivided, the new problem is how to  obtain several 

uniform tetrahedra. For this, we are inspired by the Sierpinsky tetrahedron, as illustrated in Figure 12. 



International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 69, No  1, pp 292-315 

306 

 

Figure 12: sierpinsky tetrahedron according to [10]. 

Although the considered approach seems interesting, it has however a drawback for our field which is 

surgery. Indeed, to proceed as Sierpinsky would lead us to a mesh in tetrahedra, but leaving at each 

subdivision, a hole on each face. We propose to modify Sierpinsky's approach. A first approach consists in 

“filling up” the holes and obtain four tetrahedra and an octahedron as illustrated in Figure 13. 

 

Figure 13: Tetrahedron subdivided into four tetrahedra and one octahedron. 

However, it is first necessary to unsew and sew faces in order to obtain the four tetrahedrons. Then, you 

have to insert faces in order to “plug” holes and obtain the octahedron. It is then necessary to subdivide the 

octahedron into tetrahedrons, by inserting faces. We propose a faster method by avoiding constructing and 

then decomposing an octahedron. After subdividing the four faces of the tetrahedron such, we decide to 

isolate from the initial tetrahedron four volumes (F1, F2, F3), (F4, F5, F6), (F7, F8, F9), (F10, F11, F12), 

and four faces by uncut faces. We obtain the configuration illustrated in Figure 14. 

 

Figure 14: insulation of faces and volumes. 

We can then perform face insertions in order to close the four volumes obtained. Inserting faces will allow 

us to obtain four small tetrahedra and automatically create four other uniform faces with the small faces 
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already created. We can therefore use these four new faces in addition to the four other isolated faces to 

create four new tetrahedra uniform to the other existing tetrahedrons by using the face stitching operations. 

We therefore obtain eight tetrahedra resulting from the initial tetrahedron. 

However, let us not forget that we must take into account the notion of resolution. We must therefore be 

able to identify the level of resolution of a tetrahedron. 

For this, we define an application µt which associates to each strand the level of subdivision of its 

tetrahedron by : 

µt : B→N 

       
      , où nt est le niveau de résolution du tétraèdre du brin b. 

A similar comparison to the one stated for the proof of Theorem 1 allows us to state the following 

corollary: 

Corollary  Let B be the set of darts of a G-map.                         

Remark  At each subdivision of a tetrahedron from a dart b of tetrahedron level i-1, the level of the strands 

of the tetrahedra created by i must be modified. 

At each insertion of faces at a level i, it is necessary to browse all the inserted faces and replace the edge 

and face levels of their strands by i. 

If an edge has just been subdivided at level i, and its darts have images by α3 and for each dart b of the 

edge, if µa(bα3)<i (and then µf(bα3)<i by the Theorem 1), 

 bα3α0
i
= bα3α0,   µa(bα3)=i, µf(bα3)=i, 

 bα3α0= bα3,   µa(bα3α0)=i, µf(bα3α0)=i 

4.3.4 Our topological model with adaptive resolution 

We propose an extension to the formalism of G-maps by introducing a notion of hierarchy at the dart level. 

A dart b is therefore also identifiable by a dart level, an edge level, a face level, a tetrahedron level, a list of 

the different bα0
i
 resulting from the subdivision of an edge at a given level i. This extension of resolution 

consists in keeping all the intermediate meshes of the process of subdivision. 

By introducing the hierarchy at the level of darts, it is possible to identify darts according to the level 

where they were introduced in the map. The level 0 darts are those introduced in the initial g-map and 

before any subdivision. Level 1 darts are introduced after a subdivision, and so on. More precisely :  

If we have B0 at level 0, we will have B1 at level 1 such that      . 
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More generally, if k is the maximum level of resolution, we will therefore have : 

                             

During a subdivision step, we perform vertex insertions (edge sections), edge insertions or face insertions 

between the new vertices, so the valence of vertices in the initial mesh is not modified. Thus, an α1 no dart 

being inserted in an α1 permutation between two levels. 

Formally, 

             
       

                    , k is the maximum level of resolution. 

Unlike bonds αi, i≥1 which do not change after a subdivision step, bonds are modified (not necessarily but 

only if the edge has been subdivided) and therefore require special consideration. In the example of Figure 

14, for darts of B
i
, the relations α

i+1
 are not equal to the relations α

i
. 

We can therefore model the topology of a generalized map extended to adaptive resolution by : 

                                     

Each level of resolution is represented by : 

Gi= (Bi, α0
i
, α1|Gi, α2|Gi,…, αn|Gi) où αj|Gi, j ≥ 1, is the restriction of αj to the elements of Gi. 

5. Results 

Subdivision operations that we implement must respect the standards of the topology. For this purpose, we 

used the topologically based geometric modeler MOKA. MOKA has routines for inserting a vertex on an 

edge, inserting faces and edges. We also have a routine for closing a volume. Only, these routines do not 

take account level of resolution of the objects. 

We present in this section, some algorithms that were necessary during the implementation of our 

subdivision operations. We also present a view of our adaptive resolution subdivision operations.. 

5.1 Adaptive resolution subdivision of triangles 

 Edge subdivision algorithm. 

Input : A dart           the current subdivision level. 

Output : Dart b10 such as bα0
i
=b10. 

(/*Begin*/) 
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                       ; 

                   ;                
         ; 

                   ;                       ; 

bα0
i   b10 ; bα0

i-1   b10α1; 

b10α0
i   b; b10α1α0

i
    bα0

i-1
; 

Return(b10) ; 

(/*End*/) 

We will refer to this function by calling subdividedge(b,i) ; 

We present in Figure 15 an example of subdivision with adaptive edge resolution. 

 

Figure 15: edge subdivision at Level 3. 

 Traingle subdivision algorithm 

Input : A dart b   B,  i   N 
*
   the current subdivision level. 

(/*Begin*/) 

if first_subdivision(b) then 

b2     bα0 ; b3     bα1 ; b4     b3α0 ; b5     b4α1 ; b6     b2α1 ; 

bα0     b2 ; b2α0     b ; 

 b3α0     b4 ; b4α0     b3 ; b5α0     b6 ; b6α0     b5 ; 
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else 

b2   bα0
i-1 

; b3   bαi ;  b4    b3α0
i-1 

; 

b6    b2α1 ; b5     b4α1; 

if not subdivide(b5,i) then 

b50     subdividedge (b5,i); 

else 

       b50   b5α0
i
 ; 

if not subdivide(b3,i) then 

b30     subdividedge(b3,i); 

else 

b30   b3α0
i
 ;   

if not subdivide(b,i) then 

b10     subdividedge(b,i); 

else   

b10    bα0
i
 ; 

b60   b6α0
i 
; b40    bα0

i
 ;  b20     b2α0

i 
; 

bi1    insert_edge(b10,b30); 

bi2   insert_edge (b20,b60);  

bi3    insert_edge(b40,b50);   

bi1α0
i
    bi1α0;  bi1α0α0

i   bi1 ;   

bi2α0
i
    bi2α0;  bi2α0α0

i
bi2 ;   

i3α0
i   bi3α0;  bi3α0α0

i   bi3 ;  
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bi1α2α0
i
    bi1α2α0;  bi1α2α0α0

i   bi1α2;  

bi2α2α0
i
    bi2α2α0;  bi2α2α0α0

i   bi2α2; 

bi3α2α0
i
    bi3α2α0;  bi3α2α0α0   bi3α2; 

Addlist(list_darts, b, b2, b3, b4, b5, b6, bi1, bi2, bi3) ; 

while non vide(liste_darts)  

ChangeLevel_bA2(dart); 

Read(next_dart) ; 

 (/*End*/) 

The procedure ChangeLevel_bA2 (b) allows to replace µa(b) et µa(bα 
i
) by i if µa(b)<i  and µf(b) and 

µf(bα
i
) by  i if µf(b)<i . If bα2 exists, this procedure also allows to replace µa(bα2) and µa(bα2 α0

i
) by i if 

µa(bα2) <i and µf(bα2) and µf(bα2α0
i
) by i if µf(bα2) <i. 

The insert_edge(b1, b2) fonction creates a new edge  from darts b1 and b2 and returns a dart of the inserted 

edge.  

 

Figure 16: visualization of successive subdivision<s of triangles. 

5.2 Adaptive resolution subdivision of tetrahedra 

The adaptive resolution subdivision of tetrahedra algorithm is based on the adaptive resolution subdivision of 

triangles algorithm as we described earlier. 
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Figure 17: initial tetrahedron. 

 

Figure 18: subdivision at step 1, 8 tetraedra. 

 

Figure 19: subdivision at step 2 of the tetrahedrom bordered by blue color in Figure 1. 

We note in Figure 19 that one face (the face offered by the red color) of a neighboring tetrahedron has been 

subdivided. Now suppose we want to subdivide the tetrahedron whose face has already undergone a 
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subdivision. Our model will have to take into account the neighborhood relations between the tetrahedrons. 

Indeed, the model will have to take into account the fact that the edges and faces of certain tetrahedra have 

been subdivided at level 1 and 2, although the level of the tetrahedron may be 1. Figure 20 illustrates this 

neighborhood management. We subdivide a current level 1 tetrahedron to level 2. 

 

Figure 20: new step 2 tetrahedron subdivision illustrating neighborhood management between tetrahedra. 

 

Figure 21: after three subdivision steps. 

The visualization of Figure 22 shows the consistency of our model. 
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Figure 22: compact view showing the preservation of the integrity of the tetrahedron after several subdivisions. 

6. Conclusion 

We have proposed in this paper, a topological model with adaptive resolution for surgical simulation. Our model 

makes it possible to simulate the operation of recursive cutting of the parts of a meshed organ into triangles or 

tetrahedra to form triangular or tetrahedral meshes and according to the desired area. This operation, applied to 

such a mesh, must be robust and ensure that the topological consistency of the model is preserved. Our approach 

is based on G-maps, which allow to detect topological anomalies in real time. It would be interesting to 

effectively couple our topological model to mechanical objects. 
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