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Abstract 

This paper deals with impulsive noise (IN) in multichannel (MC) Active Noise Control (ANC) Systems with 

Online Secondary Path Modelling (OSPM) employing adaptive algorithms for the first time. It compares 

performance of various existing techniques belonging to varied computational complexity range and proposes 

four new methods, namely: FxRLS-VSSLMS, VSSLMS-VSSLMS, FxLMAT-VSSLMS and NSS MFxLMAT-

VSSLMS to deal with modest to very high impulsive noise (IN). Simulation results show that these proposed 

methods demonstrated improved performance in terms of fast convergence speed, lowest steady state error, 

robustness and stability under impulsive environment in addition to modelling accuracy for stationary as well as 

non-stationary environment besides reducing computational complexity many folds. 

1. Introduction 

Periodic noise, typically the low frequency noise, is a serious issue in many noise handling applications, such as 

those in the industry, production plants, air conditioning units, within aerial vessels, ships, and other vehicles 

[1]. It also imperils human mental and physical health, particularly for the infants and the older ones [2, 3].  
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Active-noise-control (ANC) is the most useful instrument for reducing this low frequency noise [4]. ANC 

system works on the superposition principle, which reduces the impact of undesired noise by causing destructive 

interference between the acoustic waves from the noise source and anti-noise signal generated by the noise 

controller [5]. It uses adaptive digital filters to track the noise source, acoustic atmosphere, and unknown 

acoustic paths [6]. 

An ANC system can be configured in feedforward (FF), feed backward or, combination of both, as hybrid 

design [6]. A single channel (SC) feedforward (FF) ANC system encompasses a reference and an error 

microphone, in addition to a loudspeaker known as secondary source, as depicted in Figure 1. The reference and 

error microphones are used to pick-up undesired       and residual      noises, respectively. With the help of 

these two signals, an anti-noise signal      with the same amplitude as of undesired noise signal but opposite in 

phase is generated by the noise control adaptive filter called control filter represented by     ) and released 

through secondary source (loudspeaker). The cancelling signal      propagates through secondary path      to 

the error microphone where residual error      is calculated which is iteratively used to update control filter’s 

     coefficients [7].  

 

Figure 1: Single-channel (SC) feedforward (FF) ANC system. 

In an ANC system, coefficients of control filters are updated recursively on each iteration using adaptive 

algorithm [4, 5]. Least Mean Square (LMS) algorithm and its different variants have proven most effective 

adaptive algorithms in ANC systems due to its simplicity and performance [8]. Filtered-x-Least Mean Square 

(FxLMS)  is a renowned, simplest and commonly used adaptation algorithm for ANC systems [8, 9]. The input 

reference signal       in the FXLMS algorithm is passed through a prototype of the perceived secondary 

acoustic path  ̂   , succeeding adaptive noise controller     , and therefore termed as “filtered x algorithm”. 

Although, FxLMS algorithm is moderately resilient to inaccuracies between secondary path      and modeling 

filter  ̂   ;however, the noise reduction capabilities are lower than to what are under ideal environment [9]. 

Thus, to cater for varying nature of secondary path and its effect on the overall performance of an ANC system, 

online identification or modeling of secondary path is essential to preserve stability, and robustness and to keep 

noise reduction performance at optimum level [10]. Eriksson and Allie [11] proposed a method to approximate 

the secondary path coefficients by infusing an internally generated auxiliary random white noise       into the 
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system as shown in Figure 2. Modeled secondary path  ̂    is estimated by measuring response of original 

secondary path      to this auxiliary white noise      . Figure 2 shows the use of an extra online secondary 

path modelling (OSPM) adaptive filter  ̂   , based on LMS algorithm, in addition to the FxLMS algorithm-

based control filter     . The reference noise signal       propagates through primary path     , (between 

input noise source and error microphone) while cancelling signal propagates through secondary path     , (from 

secondary source (loudspeaker) towards error microphone) where residual error      is calculated to update 

control filter     .  

A glaring issue that Eriksson’s method faces is that auxiliary random white noise       turns up in the residual 

error signal      which interferes with convergence of control filter     . Similarly, the residual error      

itself causes hindrance to the modelling process and convergence of OSPM filter. Various researchers proposed 

different methods for improvement in Eriksson’s technique. For example, Akhtar and colleaguesproposed 

improvement in Eriksson’s method by using a simple VSSLMS algorithm for modelling process [12]. Ahmed 

and colleagues [13] proposed betterment through two stage Auxiliary Noise Power scheduling (ANPS) to 

calculate time varying gain     .. Yang and colleagues [14] innovated use of self-tuning power scheduling for 

determining the gain      based on the variations of the modeling error       whereas three adaptive filters are 

used to tune the step size    of OSPM filter. Additionally, to speed up the process of reducing disturbances in 

the modelling process, an additional reference signal cancelling filter      was also utilized in [14]. 

 

Figure 2: Online Secondary Path Modeling (OSPM) by Eriksson. 

A single-channel ANC system (as shown in Figure 1 & Figure 2) is an effective tool to manage low frequency 

noise in a narrow duct. However, in more practical scenarios, as the noise field grows in an extended channel or 

in any large enclosure, the process of noise control or cancellation becomes further intricate than in a simple 

narrow channel.  

Therefore, in order to manage such comprehensive and complicated noise scenarios, it becomes imperative to 

deploy a multichannel ANC (MCANC) system made up of several secondary sources, numerous error sensors, 

and different reference mics [15]. In Figure 3, a         MCANC structure with I number of reference noise 

inputs    
                       , J number of secondary loudspeakers, and K number of error microphones 



International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 69, No  1, pp 366-390 

369 

                         , is shown. In such a construction of MCANC system, a total of     time 

varying secondary paths        are required to be modelled through OSPM process which is comparatively a 

more cumbersome job than for a single channel ANC system. This increase in complexity is mainly due to 

generation of complicated error signal       from each of   error microphones which is a combination of 

signals arriving from different primary        and secondary        paths. S.M. Kuo and D.R. Morgan 

concluded in [4] that different reference signals    
    may be averaged over to make single reference signal 

      which will have same effect as each of the individual reference signals combined but with reduced 

complexity. Thus, a general       MCANC system will be considered in this paper.  

 

Figure 3: Structure of       MC ANC system. 

Most researchers, including [12, 13, 14, 16], primarily dealt with Gaussian noise, however, many practical 

applications in industry and construction like stamping and cutting machinery in the production set-ups, pile 

drivers and gasoline engines etc. require dealing with impulsive noise (IN)  [17, 18].  

IN is often characterized by strong, abrupt mutations that change the signal's distribution into a non-Gaussian 

one [19]. A symmetric α-stable distribution can be used to model impulsive noise with the following 

characteristic function [17]: 

        | |       

Where   in above equation is the characteristic exponent that determines form of a distribution and its value 

ranges from      . Tail will be heavier for   closer to 0, depicting very high impulsive nature of the noise. 

On the other end, as   approaches 2, the impulsive nature keeps on diminishing and distribution becomes more 

and more Gaussian.  , in (1) is the scaling parameter which if set to 1, makes the     distribution a standard 

distribution. Same will be utilized in this paper i.e.,       and    . Figure 4 shows a standard     

distribution for different values of  . 
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Figure 4: PDFs for standard SαS distribution of various α. 

The traditional FxLMS algorithm, which minimizes error signal's variance, has shown to be quite effective at 

suppressing Gaussian noise [8]. However, due to non-existence of second-order moment in impulsive noise, the 

FxLMS method degrades and diverges when dealing with IN [20]. Filtered-x least mean p-power (FxLMP) 

approach as described by Leahy [21] works on minimizing the lower order fractional moment of error, p 

(0<p<α), which occurs for stable distributions. In terms of active IN suppression, it is more resilient than the 

FxLMS algorithm. Its convergence speed, however, is very slow, particularly when noise becomes increasingly 

impulsive. Furthermore, it necessitates a difficult process of prior approximation of p based on α for adequate 

results. Sun [22] and Akhtar [23] proposed modifications in FxLMS by applying threshold in the algorithm. 

This threshold eliminate the aberrant values in reference noise and / or error signal/s, which may lead to 

instability in the ANC system. Sun used Modified Reference FxLMS (MRFxLMS) algorithm [22] to discard 

any value of reference signal above a certain threshold while Akhtar presented Threshold based FxLMS (Th-

FxLMS) algorithm [23] to clip samples of reference noise and / or error signal/s above threshold to provide 

stability in the system. Similarly, Zeb [24], in 2017, employed same threshold concept using Filtered-x 

Recursive Least Squares (FxRLS) algorithm and suggested Threshold based FxRLS (TFxRLS) algorithm for IN 

in ANC systems. The TFxRLS algorithm improved the convergence of the system greatly but conceded on 

increased computational complexity. Zeb [24] also proposed hybrid Modified Gain FxRLS-Normalized Step 

Size FxLMS (MGFxRLS - NSSFxLMS) algorithm that shows faster convergence speed than NSSFxLMS with 

lesser complexity than FxRLS. Researchers, in [22, 23, 24], worked with offline modelling in their threshold-

based algorithms as computation of optimal threshold was not possible in the case of  ANC systems with 

OSPM. Jabeen and colleagues [16] employed OSPM for IN in single channel ANC system using FxRLS with 

the help of an additional filter as in Yang’s method [14] and proposed three different variants namely, FxRLS-

FxRLS, MGFxRLS-FxRLS and VSSFxNLMS-FxRLS. These variants improved modeling accuracy, provided 

faster convergence and robustness with varying computational complexities. Although, FxRLS and its variants 

[16, 24] improved performance, but its complexity is of order O(n
2
) as compared to the order O(n) complexity 

of the algorithms belonging to FxLMS family. 
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Another technique to deal with IN, but still keeping the complexity low, is to use high-order-error-power 

(HOEP) adaptive algorithms [25, 26, 27]. Filtered-x Least Mean Absolute Third (FxLMAT) algorithm is one 

such HOEP algorithm that  uses mean absolute third power of error signal      and outperforms FxLMS for 

majority of noise probability densities [26, 27, 28]. However, FxLMAT faces stability issues because of its 

dependence on various input characteristics i.e., weight initialization and variance etc. [28]. Xiong, in [29], 

formulated normalized LMAT (NLMAT) to cater for these instability issues which can subdue non-Gaussian 

noise better than other algorithms. Moroever, H. A. Khan and colleagues [30], employed FxLMAT to mitigate 

IN in single channel ANC System with OSPM. Khan proposed different variants, FxLMAT, MFxLMAT and 

VSSFxRNLMAT [30] to be used in control filter      while employing VSSLMS in modeling filter  ̂     in 

addition to a third filter      as in yang’s method [14]. 

Various researchers [22, 24, 20, 23] presented different methods to alleviate IN but almost all of them worked 

with offline modeling of secondary path which are not reliable solutions for time varying paths. Recently, 

Jabeen and colleagues [16] and Hashir and colleagues [30] worked on Single channel ANC system with OSPM 

for IN.  

However, there is still no published research that can control the IN actively and adaptively in a MC ANC 

systems along with the employment of OSPM technique. Considering this fact, we took motivation to undertake  

The layout of remaining paper is that Section-II briefly discuss Akhtar’s method for MCANC system with 

OSPM. Section-III presents new proposed techniques, followed by section-IV which comprises of complexity 

comparisons of various methods discussed in this paper. Section-V shows computer simulations to validate 

results of proposed methods, summed up by concluding note. 

2. Section-II: Basic MC ANC System with OSPM 

Akhtar and colleagues [12] presented an efficient VSS-LMS algorithm based MC ANC system for Gaussian 

input using Eriksson’s [11] structure of OSPM to keep the complexity low (Figure 5). This variable step size 

(VSS) strategy used power ratio       of error signals       and       to compute step size    
    for OSPM 

filters as follows: 

   
               

 (       )      
     

Where      
 and      

 are lower and upper step size values, determined experimentally. Power ratio       is 

given by: 

       
   

   

      
      

These powers       are estimated through low pass estimator (LPE), as: - 
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Whereas error signals are defined as: - 

               [  
  

      
  

   ]  [  
        

     ]                           

and    

                [ ̂ 
       ̂ 

     ]     

Akhtar and colleagues initialized OSPM filters by offline modeling which was stopped when error was lowered 

to -5 dB. Afterwards, OSPM filters are updated using following: - 

 ̂           ̂           
   [            ]     

After convergence of OSPM filters, Control filters in Akhtar’s method are updated by MeFxLMS algorithm as: - 

                     
 [       ̂                ̂      ]     

 

Figure 5: Akhtar’s method for OSPM in MC 1x2x2 ANC System. 
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3. Section-III: Proposed Methods 

A. Proposed Method – 1: FxRLS & VSSLMS  

FxRLS algorithm has been proven favorable in dealing with impulsive noise in single channel ANC system [16, 

24]. In this method (Figure 6), FxRLS has been employed in control filters of MC ANC system while modelling 

filters are adapted through VSSLMS algorithm as follows: - 

 ̂           ̂           
    [            ]     

where       is modelling error signal, defined as: - 

               [ ̂ 
       ̂ 

     ]      

and  

               [  
  

      
  

   ]  [  
        

     ]       

                

while step size    
is calculated through: - 

   
               

 (       )      
      

     
 and      

 are lower and upper step size values determined experimentally and       is power ratio of 

modelling and residual errors, given as: - 

       
   

   

      
        

where    
    and    

    are powers of       and       error signals which are estimated employing low pass 

estimator of the form: 

   
        

             
                      

After convergence of OSPM filters, FxRLS algorithm is used to update ANC filters as following: - 

                            
              

         

where  

    
     

    
 ̂      

 ̂              
 ̂        

           



International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 69, No  1, pp 366-390 

374 

    
 is initialized as     

         and   is regularization parameter having experimentally determined value. 

 

Figure 6: Proposed method – 1, FxRLS & VSSLMS. 

B. Proposed Method – 2: VSSLMS & VSSLMS  

Proposed method - 1, FxRLS & VSSLMS, produced good results but at the cost of high computational 

complexity. Consequently, there was a dire need to find a less complex solution to handle impulsive noise. In 

this method, a less complex algorithm, VSSLMS, is used in both modeling and control filters that yet shows 

performance comparable to that of FxRLS variant discussed above. Modeling process is same as given in 

Proposed method 1 (equations 9-14). Thus, following equations are used to update OSPM filters: - 

 ̂           ̂           
    [            ]      

Whereas control filter is updated using: - 

                     
    [       ̂                ̂      ]      

Step size    
    to be computed as under: - 

   
               

 (       )      
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And       is calculated using (13) and (14) 

 

Figure 7: Proposed method – 2, VSSLMS & VSSLMS. 

C. Proposed Method – 3: FxLMAT & VSSLMS  

Proposed Method - 2 provided simplicity, but convergence speed was affected. To find fast convergence along 

with less complexity, a HOEP algorithm, FxLMAT in combination with VSSLMS (Figure 8) is tried as under: 

Control filters will be adapted using: - 

                    [  
        (     ) ̂        

        (     ) ̂     ]      

where       is determined experimentally. 

Modelling filters are adapted through VSSLMS algorithm using equations 9-14 
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Figure 8: Proposed method – 3, FxLMAT & VSSLMS. 

D. Proposed Method – 4: NSS MFxLMAT & VSSLMS  

Bona fide FxLMAT did not produced anticipated results. A modified version of FxLMAT is proposed here 

which has much less computational intricacy but shows performance comparable to that of FxRLS variant 

discussed above. 

Here, again, the modelling process is carried out using VSSLMS technique similar as given in Proposed method 

1 (equations 9-14). Therefore, details of only control filters will be discussed here. Below is the weight update 

equation for control filters: - 

               [   
     

        (     ) ̂         
     

        (     ) ̂     ]      

Where step size parameter    
    is calculated as: - 

   
     

  

‖ ̂       ̂     ‖
        

   is experimentally determined by extensive simulations. 
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Figure 9: Proposed method – 4, NSS MFxLMAT & VSSLMS. 

4. Section-IV: Computational Complexities 

Any algorithm's implementation in real-time applications significantly depends upon computational complexity. 

Table 1 shows summary of computational complexities for various existing and proposed methods discussed in 

this paper. 

Table 1: Computational Complexities. 

Methods ×, ÷ , √ +, - Total 

Eriksson’s method 16M+8Lw+4 18M+6Lw-6 34M+14Lw-2 

Akhtar’s method 16M+8Lw+22 18M+6Lw+6 34M+14Lw+28 

Ahmed’s method 24M+14Lw+81 28M+14Lw+34 52M+28Lw+115 

Yang’s method 18M+8Lw+4K+40 20M+6Lw+4K+12 38M+14Lw+8K+52 

Jabeen’s method 
4Lw

2
+4M

2
+24M+ 

14Lw+4K+34 

4Lw
2
+4M

2
+18M+ 

6Lw+4K+12 

8Lw
2
+8M

2
+42M+ 

20Lw+8K+46 

Proposed method – 1  4Lw
2
+16M+14Lw+22 4Lw

2
+18M+6Lw+6 8Lw

2
+34M+20Lw+28 

Proposed method – 2 16M+8Lw+26 18M+6Lw+10 34M+14Lw+36 

Proposed method – 3 16M+8Lw+30 18M+6Lw+6 34M+14Lw+36 

Proposed method – 4 2L+16M+6Lw+36 4L+18M+6Lw+4 6L+34M+12Lw+40 
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5. Section-V: Simulations and Discussions 

 This section discusses results of extensive MATLAB simulations carried out to validate the superior 

performance of proposed methodologies by comparing them with existing methods as mentioned below:  

 Erikson's method [11] 

 Akhtar's method [12] 

 Ahmed's method [13] 

 Yang's method [14] 

 Jabeen’s method [16] 

Mean Noise Reduction (MNRk) and Relative Modeling Error (    ) are two performance metrics used for 

comparison of all algorithms under investigation. The MNRk is defined as: - 

         {
   

   

   
   

}       

where    
    is measurement of absolute value of disturbance signal and    

    is absolute value of residual 

error, both measured at k
th

 error microphone, calculated as: - 

   
         

           |     |       

   
         

           |     |       

On the other hand, the value of      is calculated as given in (26) 

               

‖        ̂     ‖

‖      ‖
      

Using data from [4], original primary        and secondary        acoustic paths are taken as FIR filters. 

Values of various fixed parameters used for simulations in this paper are given in Table 2. Extensive 

simulations have been carried out to determine appropriate values for various controlling parameters to attain 

best results and these values are given in  

Table 3.  

Modeling filters  ̂      in all proposed methods are adapted through VSSLMS algorithm which has stability 

issue at start when step size is smaller [31]. To avoid instability, modelling filters  ̂      are initialized by 

offline modelling until the modeling error is dropped to -5 dB instead of null vector [32].  

Cases 1-3 of this section discuss performance of proposed algorithms under stationary environment with varying 

impulsive input (Error! Reference source not found.). Case – 4 presents performance for non-stationary 

environment: - 
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 Case – 1: Moderate impulsive input (α=1.85) 

 Case – 2: High impulsive input (α=1.65) 

 Case – 3: Very high impulsive input (α=1.45) 

 Case – 4: Non-Stationary Environment 

 (I guess you have used subplotting command, don’t use it,  also pics are still very unclear) if you want to plot 

more than one pic and preseny them simultaneously, plot them separately, insert in word, label a,c\b,c,d, etc and 

add captions for each of them at end 

 

Figure 10: (a) Moderate impulsive input (α=1.85), (b) High impulsive input (α=1.65), 

(c) Very High impulsive input (α=1.65), (d) Blended impulsive input. 

Table 2: Various simulations parameters. 

MC ANC system with OSPM IN [      ] 
Parameter Symbol Value Parameter Symbol Value 

Primary paths tap size L 48 Total samples N 100,000 

Secondary paths tap size M 16 Total realizations Avg 10 

Control filters tap size Lw 32 
Characteristic 

exponent 
α 

1.85, 1.65, 1.45 

OSPM filters tap size M 16 Other parameters 

γ 1 

C 0 

δ 0 

 



International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 69, No  1, pp 366-390 

380 

Table 3: Controlling Parameters. 

Methods Case – 1  Case – 2  Case – 3  Case – 4 

Eriksson’s method 

μw = 5e-7 

μs = 1e-4 

λ = .99 

- - - 

Akhtar’s method 

μw = 3e-7 

μs_min = 7.5e-5 

μs_max = 7.5e-4 

λ = .99 

- - - 

Ahmed’s method 

μ1 = 2.5e-3 

μ2 = 9.5e-3 

α = .997 

γmin = .3 

γmax = .9 

λ = .999 

- - - 

Yang’s method 

μw = 1e-7 

μh = 1e-4 

α = .005 

λ = .9999 

μw = 1e-7 

μh = 1e-4 

α = .0025 

λ = .9999 

μw = 1e-8 

μh = 1e-8 

α = .0015 

λ = .9999 

μw = 1e-8 

μh = 1e-8 

α = .0015 

λ = .9999 

Jabeen’s method 

δ1 = 1e5 

δ2 = 4.5e4 

μh = 1e-4 

λ = .99 

δ1 = 1e5 

δ2 = 6.5e4 

μh = 1e-4 

λ = .999 

δ1 = 1e6 

δ2 = 6.5e5 

μh = 1e-6 

λ = .99 

δ1 = 1e6 

δ2 = 6.5e5 

μh = 1e-6 

λ = .99 

Proposed method - 1 

δ = 5e4 

μs_min = 1e-4 

μs_max = 7e-3 

λ = .99 

δ = 5e4 

μs_min = 1e-4 

μs_max = 7e-3 

λ = .99 

δ = 5e5 

μs_min = 1e-4 

μs_max = 7e-3 

λ = .99 

δ = 5e5 

μs_min = 1e-4 

μs_max = 7e-3 

λ = .99 

Proposed method - 2 

μw_min = 1e-6 

μw_max = 1e-4 

μs_min = 7.5e-4 

μs_max = 7.5e-3 

λ = .99 

μw_min = 1e-6 

μw_max = 1e-4 

μs_min = 7.5e-4 

μs_max = 7.5e-3 

λ = .99 

μw_min = 1e-7 

μw_max = 1e-5 

μs_min = 7.5e-6 

μs_max = 7.5e-3 

λ = .99 

μw_min = 1e-7 

μw_max = 1e-5 

μs_min = 7.5e-6 

μs_max = 7.5e-3 

λ = .99 

Proposed method - 3 

μw = 1e-7 

μw_max = 7e-2 

μs_min = 1e-4 

λ = .999 

μw = 1e-9 

μw_max = 7e-2 

μs_min = 1e-4 

λ = .999 

μw = 5e-13 

μw_max = 7e-2 

μs_min = 1e-6 

λ = .999 

μw = 5e-13 

μw_max = 7e-2 

μs_min = 1e-6 

λ = .999 

Proposed method - 4 

μw = 5e-3 

μs_min = 1e-4 

μs_max = 7e-3 

λ = .99 

μw = 5e-3 

μs_min = 1e-4 

μs_max = 7e-3 

λ = .99 

μw = 9.5e-4 

μs_min = 1e-4 

μs_max = 7.5e-3 

λ = .99 

μw = 9.5e-4 

μs_min = 1e-4 

μs_max = 7.5e-3 

λ = .99 

Case – 1 : Moderate Impulsive Input (α=1.85)  

To begin with simulation part, all reported algorithms [11, 12, 13, 14, 16] are subjected to moderated impulsive 

noise (α=1.85) for MC ANC with OSPM. Figure 11 shows comparison of relative modelling error         and 

mean noise reduction (       ) of various existing techniques. Figure 11 (a) shows that Yang’s method 

exhibits fastest convergence at n=10,000 and achieving lowest value of                while MNR curve 

depicted in Figure 11 (b) shows that Jabeen’s method achieved convergence at n=20,000 with lowest steady 

state value (0.35 dB) among all the existing methods [11, 12, 13, 14, 16]. Since, Yang’s and Jabeen’s methods 

outperform other exiting methods hence, only these two methods are being employed in future simulations and 

compared with algorithms proposed in this paper. 
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Figure 11: Simulation Results - Existing Methods, Case-1. (a) ∆S (b) MNR. 

Although, Jabeen’s method [16] exhibited best performance in terms of noise reduction among existing 

techniques as shown in Figure 11 (b), however, this exceptional performance was achieved at the cost of higher 

computational complexity due to use of FxRLS-FxRLS algorithm in both, control       as well as modelling 

 ̂      filters. To overcome this additional computation load while achieving similar performance, we 

developed our first proposed method which is a combination of FxRLS-VSSLMS algorithms (Proposed method 

- 1). This proposed method has quite less computational complexity (Table 1) as compared to Jabeen’s method 

but in the noise reduction, it even surpasses Jabeen’s method in terms of convergence speed, robustness to 

impulsive input and lower steady state value (Figure 12). MNR curve depicted in Figure 12 (b) shows that 

Proposed FxRLS-VSSLMS achieved convergence at n=8000 with steady state value of 0.27 dB. 

Good results of Proposed FxRLS-VSSLMS algorithms motivated us to further develop our second proposed 
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algorithm, VSSLMS-VSSLMS (Proposed method - 2), which has even lesser complexity (Table 1) than our 

proposed method 1 and still achieves same steady state MNR values (0.27 dB) as in the case of Proposed 

method 1, however, with reduced convergence speed at n = 16,800 as shown in Figure 12 (b). 

 

 

Figure 12: Simulation Results, Case-1. (a) ∆S (b) MNR. 

To combine the positive aspects (e.g. low steady state error and robustness) in both the proposed methods – 1 

and 2 and cater for their negative aspects (e.g. high computational complexity in Proposed FxRLS-VSSLMS 

and slow convergence in Proposed VSSLMS-VSSLMS), a third method is proposed. This third proposed 

method combines FxLMAT (as used by Khan and colleagues against IN [30]) with VSSLMS algorithms 

(Proposed method – 3). This method when implied in a MCANC system in the presence of IN, although 

achieved steady state value (0.35 dB)  as in Jabeen’s method, however, its convergence is very slowly, achieved 

at n=50,000. Moreover, Proposed FxLMAT-VSSLMS does not show robustness to impulsive nature of input 
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noise, (Figure 12 (b)). Hence, lastly, a modified version of FxLMAT is presented in proposed method 4 as 

combination of NSS MFxLMAT-VSSLMS. Figure 12 (b) shows that this proposed NSS MFxLMAT-VSSLMS 

demonstrates best results among all techniques with fastest convergence at n=4000 and same steady state value 

of     = 0.27 dB with least complexity (Table 1).  

Case – 2: High Impulsive input (α=1.65)  

For high IN, similar results are obtained as in Case-1 of moderate IN. Simulation results shown in Figure 13 (a) 

confirms that Yang’s method [14]  extended to MC again gives best result in reduction of relative modelling 

error       = -30 dB while proposed algorithms yet again give best MNR curve but with less computational 

complexity (Table 1). It is evident from Figure 13 (b) that proposed methods – 1, 2 & 4 achieve lowest steady 

state MNR value of 0.24 dB. Proposed VSSLMS-VSSLMS exhibits slower convergence at n= 13500, similar to 

its performance in case – 1. Proposed FxRLS-VSSLMS and Proposed NSS MFxLMAT-VSSLMS show faster 

convergence at n= 8000 and n=4000, respectively.  

 

Figure 13: Simulation Results, Case-2. (a) ∆S (b) MNR. 
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Case – 3: Very High Impulsive input (α=1.45)  

In this case, when the input noise becomes highly impulsive, Yang’s method [14] consistently performed best 

(Figure 14 (a)) for reduction of relative modelling error      = -30 dB. On the other end, MNR performance of 

Proposed VSSLMS-VSSLMS has deteriorated for this excessive IN (Figure 14 (b)). However, Proposed 

FxRLS-VSSLMS and Proposed NSS MFxLMAT yet again performed unswervingly best for MNR curve with 

fastest convergence at n=8000 and lowest steady state error of 0.22 dB and 0.28 dB respectively. 

 

Figure 14: Simulation Results, Case-3. (a) ∆S (b) MNR. 

Case – 4: Non-Stationary Environment  

In our final evaluation, proposed methods are subjected to non-stationary environment to check for their 

robustness as follows:- 
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a. In first instance, all secondary paths are perturbed at iteration n=50,000 and very high IN (α=1.45) of 

case 3 is used as input to assess behavior of proposed algorithms. 

b. In second trial, a blended impulsive input comprises of varying α is used as under Figure 10 (d):-  

  {
                                    
                              
                             

 

  Simulation results (Figure 15 & Figure 16) confirm robustness of proposed algorithms under 

non-stationary environment.Figure 15 (a) shows that only Yang’s method, Proposed FxRLS-VSSLMS and NSS 

FxLMAT-VSSLMS converge after perturbation is encountered at n=50,000. Moreover, Yang’s method 

consistently manifested lowest relative modeling error by reaching to -30 dB. Similarly, Figure 15 (b) shows 

that Proposed FxRLS-VSSLMS and NSS MFxLMAT-VSSLMS performed in same manner as in case – 3 

(α=1.45). In this case, both the proposed algorithms have touched lowest steady state error of 0.20 dB and 0.22 

dB respectively. It is important to note that after encountering perturbation at n=50,000, both algorithms took 

8000 iterations again to converge at n=58,000 as in the beginning (n=0 to n=8000).  

 

 

Figure 15: Simulation Results, Case-4 (α = 1.45). (a) ∆S (b) MNR. 
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Figure 16: Simulation Results, Case-4 (blended input). (a) ∆S (b) MNR. 

Figure 16 shows response to blended IN. At beginning n=0, high impulsive input (α=1.65) is used. At n=35000, 

it is changed to very high IN (α=1.45) and at n=70000, to moderate IN (α=1.85). It is evident from simulation 

results depicted in Figure 16 (a) that Yang’s method continue to perform best for relative modeling error. A 

slight change is observed in convergence pattern at swap over points in relative modeling error. Figure 16 (b) 

illustrates MNR for blended IN. Proposed FxRLS-VSSLMS and NSS MFxLMAT-VSSLMS once again reached 

to lowest steady state error of 0.22 dB and 0.25 dB, respectively.  

Only a minor disturbance is noticed at swap over points (n=35000 and n=70000). 
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6. Conclusion 

In this paper, four new methods are proposed to mitigate IN in MC ANC system employing OSPM for the first 

time under stationary as well as non-stationary environment. The outcomes of the simulations show that the 

proposed algorithms offer quicker convergence and lowest steady state error for MNR than existing approaches 

with comparable modeling accuracy. Proposed NSS MFxLMAT-VSSLMS achieved same performance as par 

with high order complex FxRLS algorithm with much less computational complexity. There is a room of 

improvement available in modeling accuracy which is a task of future work. 
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