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Abstract 

Angular momentum can simply be interpreted as the momentum of an object that rotates or rotates. Angular 

momentum or angular center intuitively measures how much linear momentum is directed around a certain point 

or often called the center point. In this paper, an analysis of angular momentum in quantum mechanics has been 

carried out, as well as a study of the expansion of the application of angular momentum in quantum mechanics 

in the form of the Clebsch–Gordan coefficient. 
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1. Introduction  

In physics, angular momentum is important because angular momentum is a physical quantity that is always 

relevant when studying atoms. Besides that, angular momentum has a close relationship also in studying 

moments of inertia and torque. Previously, angular momentum was given in modern form via Noether's 

theorem. The conservation of angular momentum is discussed in two ways, related to the inertia of rotation of 

objects and the motion of planet revolutions [1]. Angular momentum in classical mechanics is given in vector 

form. The plane perpendicular to this vector, according to the central field theory, determines the space in 

which the movement of the particles takes place. This cannot be studied simply in quantum mechanics. 
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The state of the particle at the center of the field is proportional to the spherical harmonics, which do not define 

any plane of motion. In classical mechanics vectors are added, whereas in quantum mechanics the Clebsch–

Gordan coefficient must be used. A classical approach to the quantum coefficients and the limits of its 

application have been found. This analysis provides a basis for the vector addition model used in several basic 

studies of atomic physics. This can help to better understand the addition of angular momentum in quantum 

mechanics [2]. In the Schrodinger equation which appears in coupling treatments in quantum mechanics such 

as atomic collisions which involve fine structure effects, alternative representations are developed in angular 

momentum algebra. The various representations are closely related to Hund's coupling scheme for rotating 

diatomic molecules. Matrix elements for electrostatic interactions and for orthogonal transformations 

connecting the various representations, are given explicitly for the case when only one atom has internal 

angular momentum and is subject to LS coupling [3]. Canonical angular momentum of a free electron, positron 

and gamma photon [4]. From the expression above, it can be seen that angular momentum in quantum 

mechanics is still interesting to study, especially the appearance in the operator form, and how it results in the 

sum of angular momentum, how the eigenvalues of angular momentum are formed. So the goal of this paper is 

to study in more detail the angular momentum in quantum mechanics and to analyze the Clebsh-Gordan 

coefficient. 

2. Method 

The method used in this study is a theoretical method by theoretically analyzing various existing literature and 

various references, then describing the angular momentum analytic form and continuing to analyze the Clebsh-

Gordan coefficient.  

3. Results and Discussion 

Angular momentum  

Angular momentum can simply be interpreted as the momentum of an object that rotates or rotates. Angular 

momentum or angular center intuitively measures how much linear momentum is directed around a certain 

point or often called the center point. In classical mechanics, the angular momentum of a particle is given by 

the equation. 

L = r x p,                                                                                                      (1) 

To obtain the cross product of the radius of the rotating axis (r) with the linear momentum (p), you can use the 

determinant matrix as follows: 

zyxz
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From equation (2) three equations of angular momentum on the rotary axis (r) are obtained as follows:
 

,yzx zpypL     ,zxy xpzpL   dan  ,xyz ypxpL                                                              (3a) 

The momentum operator for cartesian coordinates is obtained: 





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iip ˆˆˆˆ                                                                                                                 (3b) 

Then substitute equation (3b) into equation (1): 
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                                                                                          (4)
 

The corresponding quantum operators obtained from equation (4) are as follows [5]: 
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Notes:  1 iix  

i
i

1
  

Then we get the cartesian coordinate momentum operator as follows: 






























































x
y

y
xk

z
x

x
zj

y
z

z
yiiL ˆˆˆˆ                                                       (8) 

After obtaining the cartesian coordinate momentum operator, we then look for the momentum operator in 

spherical coordinates as follows: 
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Then substitute equation (9) into equation (1) : 
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Noted that 0ˆˆ rxr ,  ˆˆˆ xr  dan  ˆˆxr , then we get the equation (10) become : 
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In the previous section it is known that ̂  and ̂
 
the equation is obtained  

kji ˆsinˆsincosˆcoscosˆ                                                                                                       (12) 

ji ˆcosˆsinˆ                                                                                                                                       (13) 

Then substitute equation (12) and equation (13) into equation (10):  
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The spherical coordinate angular momentum operator is obtained as follows  
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


 iLx                                                                                                                                                    (17) 

After the operator yx LL , and zL  is obtained, then the eigenvalues and eigenfunctions can be searched [6]. 

Eigen Value 

Lx and  Ly is not alternating (non-commutative), where 

0],[  yxyxyx LLLLLL                                                                                           (18) 

In analyzing ],[ yx LL operated test function f(x, y, z)  to ],[ yx LL  : 
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All paired terms (based on cross-derivative equations) except two: 
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
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y
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yiLz   can simplify the final result to be 

fLifLL zyx ],[                                                                                                 (19)
 

Then obtained:
 

zyxyx LiLLLL  ],[],[                                                                                                    (20) 

with cyclical permutations of indices, it also follows that 

xzy LiLL ],[     dan    yxz LiLL ],[                                                                                                (21) 

From this fundamental commutation relationship, the entire theory of angular momentum can be deduced. 

Proven Lx, Ly and Lz, is an incompatible observable. According to the general uncertainty principle:

2
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Therefore, we can look for the commutative relationship between 
2L  and  L

 
obtained as follows 

  222 , LLLLLL                                                                                        (23) 

If    0, 222   LLLLLL  , so it can be obtained that the relationship between the two is commutative 

and 
22 LLLL    

To find conditions that are simultaneously eigenfunctions of Lx and of Ly. On the other hand, the square of the 

total angular momentum is obtained: 
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zyx LLLL                                                                                                                                      (24) 
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Followed by L
2
 also tested with Lx and Ly 

0],[ 2 xLL  , 0],[ 2 yLL ,                                                                                                                      (25) 

Or  

0],[ 2 LL                                                                                                                                                 (26) 

So L
2
2 is compatible with every component of L, and one can expect to find simultaneous eigenstates of L

2
 and 

Lz 

ffL 2
 and  ffLz                                                                                                                           (27) 

We will then use the ladder operator technique, very similar to that applied to the harmonic oscillator 

yx iLLL                                                                                                                                                (28) 

Its commutator with Lz is  
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)()(],[],[],[ yxxyyzxzz iLLLiiLiLLiLLLL    

So that 

  LLLz ],[                                                                                                                                         (29) 

and  

0],[ 2 LL                                                                                                                                                 (30) 

That if f is an eigen function of L
2
 and Lz, also is L± f. For Equation (29) obtained: 

       fLfLfLLfLL   22
                                                                                              (31) 

soL± f  is the eigenfunction ofL
2
, with the same eigenvalues λ, and Equation (29)  

     

    fLfLL

fLfLfLLfLLLLfLL

z

zzzz
















                                                              (32) 

So L±  f  is the eigenfunction of Lz. with new eigenvalues   . L+ is called the "increasing" operator because 

it increases the eigenvalue Lz, by   , and L- is called the "decreasing" operator because it decreases the 

eigenvalue by   [6]. 

 One constructs finite-dimensional, irreducible representations of the Lie algebra of the rotation group; from 

these, as we know, the representations of the local group follow by exponentiation. To each finite-dimensional 

irreducible representation there belongs a finite-dimensional irreducible invariant subspace; the basic states 

spanning this irreducible subspace are the angular momentum eigenstates: under rotations they are transformed 

among themselves (i.e. within that subspace) and the corresponding transformation matrices make up just the 

irreducible representation which leaves this subspace invariant [7]. 

For a given value λ, then, a "ladder" is obtained, with each "rung" separated from its neighbors by    one unit 

in the eigenvalues Lz  

0 tfL                                                                                                                                                           (33) 

l  being the eigenvalues of Lz, on this top rung (the corresponding letter l is sometimes called the azimuth 

quantum number will appear again):   

lffL tz   ;  tt ffL 2
                                                                                                                               (34) 
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Now it becomes [8](Shankar, 1998): 

    
 zz

xyyxyxyxY

LiiLLLL

LLLLiLLiLLiLLLL













22

22

 

or vice versa 

zz LLLLL 
22                                                                                                                                      

(35) 

 therefore 

      tttzzt fllfllfLLLLfL 10 22222     

and thus obtained: 

 12  ll                                                                                                                                                  (36) 

These are the eigenvalues of L
2
 in terms of the maximum eigenvalues of Lz. Meanwhile, there is also the bottom 

rung, so fb  

L – fb, =0.                                                                                                                                                       (37) 

Suppose l is the eigenvalue of Lz, on the lowest rung of this ladder 

;bbz flfL      ;2

bb ffL                                                                                                                        (38) 

by using Equation (35), is obtained 

      bbbzzb fllfllfLLLLfL 10 222222     

So that 

 12  ll                                                                                                                                                (39) 

Comparing Equation (38) and equation (39), it is seen that    11  llll , so  1 ll   (which makes no 

sense is the lower rung is higher than the top rung), or else  

1l .                                                                                                                                                             (40) 
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It is shown that the eigenvalue of Lz is m  , where m (the correspondence of this letter will also be clear soon) 

starts from –l to l in N integer steps. Specifically, here l = -l + N, and therefore 
2

N
l   , so l must be an 

integer or a half integer. The eigenfunctions are characterized by the numbers l and m 

  ;122 m

l

m

l fllfL       
m

l

m

lz mffL                                                                                               (41) 

where 

;,2/3,1,2/1,0 l       .,1,,11, lllm                                                                                 (42) 

For a given value of l, there are 2l + 1 different values of m (i.e., 2l + 1 "rung" in "Jadder"). In a purely 

algebraic way, starting with the fundamental commutation relations, we have determined the eigenvalues of L
2
 

and Lz without ever looking at the eigenfunctions themselves! Now turning to the problem of constructing the 

eigenfunctions. The point before we start 
mm Yf 11  : the eigenfunctions of L

2
 and Lz, are nothing but.  

 

Clebsh-Gordan coefficients 

The operators 
       221

3

2
1 ˆ,ˆ,ˆ JJJ and 

 2

3Ĵ commute pairwise. Their simultaneous eigenvectors are 

.22112121 mjmjmmjj 
                                                                                                          (43)

 

Similarly, 
       221

3

2
1 ˆ,ˆ,ˆ JJJ and 

 2

3Ĵ commute pairwise, too. We will construct vectors  

jmjj 21                                                                                                                                                    (44)
 

Which are simultaneous eigenvectors, i.e., which satisfy 

     ,1ˆ
2111

2

21

2
1 jmjjjjjmjjJ    

     jmjjjjjmjjJ 2122

2

21

2
2 1ˆ   , 

  jmjjjjjmjjJ 21

2

21

2 1ˆ   , 
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jmjjmjmjjJ 21213
ˆ  . 

Since 
   2

3

1

33
ˆˆˆ JJJ  , the jmjj 21

are also eigenvectors of 
3Ĵ : 

  212121213
ˆ mmjjmmjmjjJ    

It follows that 

21 mmm 
     (45)

 

Definition 1. The expansions coefficients 

jjjmmjj 212121
 

Of the vectors jmjj 21
in the basis 

2121 mmjj are called Clebsh-Gordan coefficients. 

Example 2. Consider the special case of two spin 
2
1 particles. In view of dealing with spins, we denote  js 

and 
kk JS ˆˆ  . The total spin operators is given by 

      212121 ˆˆˆˆ SSsLLiS kk    

We are going to construct the vectors smss 21
explicity. According to(45), 

1,0,0,1 m  

Write down all vectors 
2121 mmss and smss 21

and given them a shorthand notation: 

2121 mmss      smss 21  


2

1

2

1

2

1

2

1     1111
2

1

2

1
  


2

1

2

1

2

1

2

1     1010
2

1

2

1
  


2

1

2

1

2

1

2

1     1111
2

1

2

1
  
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
2

1

2

1

2

1

2

1     
0000

2

1

2

1


 

Due to (45), it is clear that the first eigenvector in the left row and the first eigenvector in the right now must be 

parallel. Therefore, we can choose 

11 .      (46) 

Now, we climb down by means of the ladder operator 

   21

21
ˆˆˆˆˆ
  SSSiSS . 

Applying 
Ŝ to (46) and using the formula 

    111ˆ  jmmmjjjmJ  ,   (47) 

We obtain  

10211ˆ S  

For the left hand side and 

     
2
1

2
12

2
1

2
1

2
1

2
1

2
1

2
11 ˆˆˆ

  SSS  

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1
   

   

For thr right hand side. Hence, 


2

1

2

1
10

    (48)

 

The coefficients 
2

1 are called Clebsh-Gordan coefficients. Applying 
Ŝ once again to (48), we obtain 

11210ˆ S  
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For the left hand side and 

       
2
1

2
12

2
1

2
1

2
1

2
1

2
1

2
11 ˆ

2

1ˆ

2

1ˆ

2

1
  SSS  

     
2
1

2
12

2
1

2
1

2
1

2
1

2
1

2
11 ˆ

2

1ˆ

2

1
  SS  

0
22

0
2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1 


 

 2  

Hence, 

11  

To determine 00 , we expand it, 

 DCBA00  

Where 

1
2222
 DCBA  

As the eigenspaces of the self-adjoint operator 
2Ŝ are mutually orthogonal, 00 must be orthogonal to 11 , 

10 and 11 . This yields 

00011  A , 00010  CB , 00011  D  

In accordance with the Condon-Shortley convention Cornwell [9] we choose B to be positive. Then, 

normalization yields 


2

1

2

1
00  

Thus, we have completed the construction of thr common eigenbasis of 
      2

2
2

2
1 ˆ,ˆ,ˆ SSS and 

3Ŝ . We 

summarize: 
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11 , 
2

1

2

1
10 , 11  


2

1

2

1
00 , 

In matrix form, the change of basis reads 


































0

0

0

1

00

11

10

11

 

2/1

0

2/1

0

 

2/1

0

2/1

0



 










0

1

0

0

 





























 

Remark  

By similar computations, we obtain the Clebsch-Gordan coefficients for 
2
1

2 j and arbitrary values of 1j : 

smjmmj
2

1

2

1
1211  

2

1
2 m  

2

1
2 m  

2

1
1  jj  

12

2/1

1

1





j

mj
 

12

2/1

1

1





j

mj
 

2

1
1  jj  

12

2/1

1

1






j

mj
 

12

2/1

1

1





j

mj
 

Theorem 2. the two bases 
2121 mmjj and jmjj 21

are related by 

 
 


1

11

2

22

,212121212121

j

jm

j

jm

mmjjjmjjmmjjjmjj  

,
21

21

212121212121  


 


jj

jjj

j

jm

jmjjmmjjjmjjmmjj  

Proof. For given values of 1j and 2j , the values of j are restricted by the condition [10]. 

2121 jjjjj   

And j runs from 21 jj  down to 21 jj  in integer steps. For 21 jjj  , the Clebsch-Gordan coefficients 
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jmjjmmjj 212121
can be read off from the sequence of equations obtained by repeated application of the 

ladder operator 
Ĵ to 

2121212121 ,,, jjjjjjjjjj  , 

As an example, consider the first step. Using 6.5, we obtain 

  1,,,2,,,ˆ
21212121212121  jjjjjjjjjjjjjjJ  

For the left hand side and 

     22

2

112211

1

2121
ˆˆˆ jjJjjjjjjJjjjjJ    

1212 2211222111  jjjjjjjjjj  

For the right hand side. This yields 

1,,,,1,,1,,, 2121

21

2
2121

21

1
212121 





 jjjj

jj

j
jjjj

jj

j
jjjjjj  

We read off 























0

1,,,
21

2

21

1

2121212121
jj

j

jj

j

jjjjjjmmjj  

otherwise

jmjm

jmjm

1,

,1

2211

2211





 

(in view of 6.3, it is clear that 0212121 jmjjmmjj unless 21 mmm  ). 

For 121  jjj etc., one first has to choose a vector jjjj 21
in such a way that it is orthogonal to all 

vectors  jjjjjjj 2121 , found before. Then, application of 
Ĵ o the expansion of this vector in the 

basis 2121 mmjj yields a sequence of equations from which the Clebsch-Gordan coefficients 

jmjjmmjj 212121 with the fixed value of j under consideration can be read off. 
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Remark  

The reduction procedure applied in he proof of Theorem 2 yields another proof of Theorem 1. indeed, the wave 

functions 
2121 mmss and smss 21

form bases in the tensor representation space 
21 jj VVV  . This space 

has dimension 

     





21

21

1212dim 21

ss

sss

ssV  

Under group transformations, the functions 
2121 mmss transform according to the representation 21 ss

DD 

of SU(2): 

   212121212121
21 mmssaDDmmssmmss

ss



  

   



























 

2

2

22

1

1

11 2211

n

s

nm

n

s

nm nsaDnsaD  

    2121

,

2

22

21

1

11
mmssaDaD

s

nm

nn

s

nm  

Where a SU(2). On the other hand, the wave functions smss 21 transform according to the representation 

sD : 

  


n

s

mn

s snssDsmssaDsmsssmss 21212121   

It follows that the transformation of V which transforms the basis 2121 mmss into the basis smss 21 provides 

the following equivalence of representations of SU(2): 







21

21

21

ss

sss

sss
DDD  

The relations between the corresponding representations matrices are given by 

   snssaDDsmssD
sss

mn 2121
21   
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  





nnn
mmm

ss
snssnnssnnssaDDmmssmmsssmss

21

21

21

21212121212121212121 ..........  

            snssnnssaDaDmmsssmss

nnn
mmm

s

nm

s

nm 212121212121

21

21

2

22

1

11



  

And, analoously, 

       2121121
212

2

1

11
nnssaDDmmssaDaD

sss

nm

s

nm   

 





21

21

21212121

ss

sss

s nnssaDmmss  

                     





21

21

21212212212212212121 ..........
ss

sss

s nnsssnsssnssaDsmsssmssmmss  

                   212121212121

21

21

nnsssnssaDsmssmmss s

mn

ss

sss






  

Where 21 mmm  and 21 nnn  . 

 Properties of the Clebsch-Gordan coefficient 

1. The Clebsch-Gordan coefficients jmjjmmjj 212121 vanish unless 21 mmm  and 

221 jjjjj   

2. For each fixed value of j, the vectors jmjj 21
are determined up to a common phase. By convention, 

these phase factors are chosen in such a way that 

jjjjmmjj 212121 is real and positive 

Then, all Clebsch-Gordan coefficients are real. 

3. The Clebsch-Gordan coefficients possess the symmetry property 

  jmjjmmjjjmjjmmjj
jjj

121212212121
211


  

4. The Clebsch-Gordan coefficients jjjjjjjj ,,,1,,, 21121  are real and positive. 
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5. One has orthogonality condition 

 
2211212121212121 mmmmjmjjmmjjjmjjmmjj   

4. Conclutions 

From the results of the study above, it can be concluded that angular momentum in quantum mechanics has 

been studied, especially the appearance in the operator form, and the sum of angular momentum, eigenform 

values of angular momentum. Angular momentum in quantum mechanics and Clebsh-Gordan coefficient 

analysis. 
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