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Abstrac 

At the beginning of 2020, the world was busy with a new virus namely COVID-19. In Indonesia, COVID-19 

virus was first identified on March 2nd, 2020. This global pandemic made several impacts. One of the impact is 

on Country's Economy that can be seen in the decline of IDX Composite and the weakening of US Dollar 

exchange rate to Rupiah. The movement of IDX Composite and US Dollar exchange rate to Rupiah often 

increases and decreases every day. This condition can be caused by volatility due to fluctuation. There are 

several methods to cover the volatility of multivariate data, one of them can be approached using Multivariate 

Generalized Autoregressive Conditional Heteroskedasticity (MGARCH) model. In addition to the GARCH 

model, there is another approach that can also be used to cover volatility data, that is Multivariate Exponential 

Weighted Moving Average (MEWMA) model. Based on the analysis results of the three training data, it was 

found that the RMSE of the BEKK GARCH method was greater than the RMSE of the MEWMA method and 

VAR(2)-MEWMA that be used on the three training data had the consistently volatility predict of IDX 

Composite return and US Dollar exchange rate to Rupiah return. MEWMA method can be said to have a better 

predictive ability, so VAR(2)-MEWMA is used to model IDX Composite return data and US Dollar exchange 

rate to Rupiah return data from November 2019 to August 2021 and is used to predict the volatility of the next 

month on September 2021. MEWMA model’s ability is quite good in predicting the volatility of IDX 

Composite return data and US Dollar exchange rate to Rupiah return data. 
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1. Introduction  

At the beginning of 2020, the world was busy with a new virus namely COVID-19. This virus has become a 

global pandemic that is very disturbing to the world community. COVID-19 virus has spread to almost every 

country in the world since it first appeared in China on December 31th, 2019. In Indonesia, COVID-19 virus 

was first identified on March 2nd, 2020. With the global pandemic, it has provided several impacts, one of the 

impact is on Country's Economy that can be seen in the decline of IDX Composite and the weakening of US 

Dollar exchange rate to Rupiah. IDX Composite is one of the stock market indexes that be used by the Indonesia 

Stock Exchange. Meanwhile, US Dollar exchange rate to Rupiah is the value or price of the US Dollar which is 

measured or expressed in Rupiah. Based on data accessed at www.Investing.com, in the past year, the mean of 

IDX Composite was 5,427.20 points and the mean of US Dollar exchange rate to Rupiah was Rp. 14,432.00. 

After the announcement of COVID-19 cases, IDX Composite has decreased, as well as US Dollar exchange rate 

to Rupiah has weakened. IDX Composite has decreased to 3,937.63 points on March 24th, 2020, where 

previously IDX Composite had a fairly high value on December 27th, 2019, which was 6,329.31 points. 

Meanwhile, US Dollar exchange rate to Rupiah has weakened to Rp. 16,575.00 on March 23rd, 2020, where 

previously US Dollar exchange rate to Rupiah was Rp. 13,572.00 on January 24th, 2020. The movement of IDX 

Composite and US Dollar exchange rate to Rupiah often increases and decreases every day. This condition can 

be caused by volatility due to fluctuation. Volatility is a change that shows the condition of the instability of a 

value. There are several methods to cover the volatility of multivariate data, one of them can be approached 

using Multivariate Generalized Autoregressive Conditional Heteroskedasticity (MGARCH) model. Currently, 

the MGARCH model has been developed into several models, one of which is the Baba, Engle, Kraft and 

Kroner (BEKK) model. The BEKK GARCH model can be used when the data has a different correlation at any 

time and when there are quite a lot of observed data conditions [1]. In addition to the GARCH model, there is 

another approach that can also be used to cover volatility data, that is Multivariate Exponential Weighted 

Moving Average (MEWMA) model. 

Rosyida (2016) in a study entitled "Modeling VARIMA-BEKK GARCH Multivariate Time Series on the US 

Dollar Exchanage Rate to Rupiah and IDX Composite" conducted a study with the aim of modeling and 

predicting the US Dollar exchange rate to Rupiah and IDX Composite using VARIMA-BEKK GARCH model. 

The forecast results obtained are that the model can describe the pattern of the data that be used. In addition to 

the GARCH model, there is another approach that can also be used to capture data volatility, that is Multivariate 

Exponential Weighted Moving Average (MEWMA) model. Wororomi, J.K (2016) in a study entitled 

"Development of a Model-Based MEWMA Control Diagram for Non-Random Observation" developed 

MEWMA control chart that was able to increase the sensitivity of conventional MEWMA control charts to the 

effects of non-random data patterns. The results obtained are the MEWMA control chart based on the model is 

sensitive to small spikes in the data. 

The movement of IDX Composite and US Dollar exchange rate to Rupiah can be seen from the return value. 

Where in IDX Composite data, the highest return value occurred on March 9th, 2020, which was –0.0658 and in 

US Dollar exchange rate to Rupiah data, the highest return value was on March 19th, 2020, which was 0.0457. 

Based on this background, considering that both of IDX Composite and US Dollar exchange rate to Rupiah 

http://www.investing.com/
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experienced a fairly high spike around March 2020 after the identification of COVID-19 cases in Indonesia, a 

model that can capture this volatility is needed. In this study, to capture the volatility of IDX Composite and US 

Dollar exchange rate to Rupiah, BEKK GARCH and MEWMA model will be used.  

2. Methodology 

2.1 Return Data 

Changes in the price of financial assets over a certain period of time are often also known as the return value of 

assets expressed as a percentage [2]. The return value is used on the grounds that cause it contains a complete 

summary of information on an investment asset from most investors and it’s easier to handle than asset data 

when viewed from a statistical points of view. The return value in time series data analysis is the same as 

performing logarithmic transformation and differentiation. The return data can be assumed to be stationary on 

variance and mean. The return value can be obtained using equation (1) [3]. 

𝑅𝑡 =
𝑌𝑡−𝑌𝑡−1

𝑌𝑡−1
  (1) 

with 

𝑅𝑡 : return value in 𝑡 period 

𝑌𝑡  : 𝑡 data period 

𝑌𝑡−1  : (𝑡 − 1) data period 

2.2 Var model 

Vector Autoregressive (VAR) model is a time series model that be used to explain causality between economic 

variables. The VAR(𝑝) model is a multivariate time series model which is an extension of the Autoregressive or 

AR(𝑝) model. The VAR(𝑝) model is a system of equations where the estimation of a variable in a certain period 

depends on the change in the variable itself and other variables involved in the system of equations in the 

previous periods. The equation of VAR(𝑝) model with order 𝑝 is shown in equation (2) [4]. 

𝒀𝑡 = 𝜱1𝒀𝑡−1 +⋯+𝜱𝑝𝒀𝑡−𝑝 + 𝒆𝑡  (2) 

description : 

𝒀𝑡 : variable vector in the 𝑡 period (𝑚𝑥1) 

𝜱𝑖  : variable coefficient matrix (𝑚𝑥𝑚) 

𝒀𝑡−𝑖 : variable vector in the (𝑡 − 1) period (𝑚𝑥1) 
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𝒆𝑡 : residual vector (𝑚𝑥1) 

𝑝 : the long of lag 

𝑚 : the many of variable 

Assuming 𝒆𝑡 is normally distributed, the estimation of the VAR(𝑝) model can use the Maximum Likelihood 

Estimation (MLE) method. 

2.3 Bekk garch method 

In the principle, Multivariate Generalized Autoregressive Conditional Heteroskedasticity (MGARCH) method 

can be generalized in the same way as in the univariate cases. This method consists of two parts, the VAR 

model and the BEKK GARCH model which are used to explore volatility [5]. In the MGARCH model, the 

conditional covariance matrix has the form 

𝑣𝑒𝑐ℎ(𝜮𝑡|𝑡−1) = 𝜸0 +∑ 𝜞𝑗𝑣𝑒𝑐ℎ(𝒆𝑡−𝑗𝒆𝑡−𝑗
′ )

𝑞
𝑗=1 + ∑ 𝑮𝑗𝑣𝑒𝑐ℎ(𝜮𝑡−𝑗|𝑡−𝑗−1)

𝑚
𝑗=1  (3) 

where 𝑮𝑗 is also a fixed (
1

2
𝑚(𝑚 + 1)𝑥

1

2
𝑚(𝑚 + 1)) coefficient matrix. The parameter space of the MGARCH 

model has large dimensions in general and needs to be constrained to ensure the uniqueness of the 

representation and to obtain appropriate properties of the conditional covariance. To reduce the parameter space, 

the diagonal MGARCH model, where 𝜞𝑗 and 𝑮𝑗  in equation (4) are diagonal matrices [6]. Alternatively, the 

BEKK GARCH model of the following form may be useful. 

𝜮𝑡|𝑡−1 = 𝑪0
∗′𝑪0

∗ + ∑ ∑ 𝜞𝑗𝑛
∗′ 𝒆𝑡−𝑗𝒆𝑡−𝑗

′ 𝜞𝑗𝑛
∗𝑞

𝑗=1
𝑁
𝑛=1 + ∑ ∑ 𝑮𝑗𝑛

∗′𝜮𝑡−𝑗|𝑡−𝑗−1𝑮𝑗𝑛
∗𝑚

𝑗=1
𝑁
𝑛=1  (4) 

description : 

𝑪0
∗   : constant matrix (𝑚𝑥𝑚) 

𝜞𝑗𝑛
∗  dan 𝑮𝑗𝑛

∗  : BEKK GARCH model parameter matrix (𝑚𝑥𝑚) 

𝒆𝑡−𝑗  : residual vector (𝑚𝑥1) 

𝜮𝑡−𝑗 : variance covariance matrix (𝑚𝑥𝑚) 

The likelihood function can be maximized with respect to the parameter by using a numerical method. The 

solution does not exist due to the nonlinear form of the function. With the existence of a unique maximum 

likelihood estimate, it is important to identify unique parameters, for example in the form of the BEKK model 

carried out with restrictions. Of course, if the log-likelihood function is used even though the actual distribution 

of 𝜺𝑡  is non-normal, then the estimation will only be a Quasi Maximum Likelihood estimate. The quasi 

maximum likelihood method is an estimation method that is carried out on the variance covariance of parameter 
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model with the residual assumption is violated. Based on the value of the variance covariance formed, a new 

inference is developed to determine the significance of the model parameter estimator. Quasi maximum 

likelihood still uses the maximum likelihood method as a basis. Calculation of the quasi variance covariance is 

also the values generated from the maximum likelihood method [7]. 

2.4 Mewma method 

The easiest multivariate volatility model to apply is the Exponential Weighted Moving Mean (EWMA). It’s 

from the EWMA univariate model that written in equation (5). 

𝜎̂𝑡
2 = 𝜆𝜎̂𝑡−1

2 + (1 − 𝜆)𝑌𝑡−1
2  (5) 

assuming that the weights are known or frequently assigned. While in the multivariate, the model is basically 

same that following equation (6). 

𝜮̂𝑡 = 𝜆𝜮̂𝑡−1 + (1 − 𝜆)𝒀𝑡−1
, 𝒀𝑡−1 (6) 

with the individual element 

𝜎̂𝑡,𝑖𝑗 = 𝜆𝜎̂𝑡−1,𝑖𝑗 + (1 − 𝜆)𝑌𝑡−1,𝑖
, 𝑌𝑡−1,𝑗 dimana 𝑖, 𝑗 = 1,… ,𝑚 (7) 

The covariance matrix can be predicted by applying equation (6) separately for each asset and asset pair in the 

portfolio. Implementing the EWMA model is easy, even for a large number of assets. Coupled with the fact that 

the covariance matrix is guaranteed to be semi definitely positive, it is not surprising that EWMA is often the 

method of choice. However, there are a few drawbacks, namely the existence of limitations, either because of its 

simple structure or a single assumption that is usually not expected. In application, it often means that the 

covariance seems to move excessively but this condition does not become difficult to estimate the parameters 

using Quasi Maximum Likelihood. Quasi Maximum Likelihood can produce consistent estimates for the mean 

and variance parameters [8]. 

2.5 Root Mean Square Error (RMSE) 

Root Mean Square Error (RMSE) is a measure that is often used to see the difference between the values 

predicted by a model with the observed values. The RMSE value serves to combine the magnitude of the error 

in predictions for various data pointss into a single measure of predictive power [9]. The RMSE value is positive 

and is said to be getting better if it is close to zero. So a model that has a lower RMSE can be said to be better 

than one that has a higher value. The RMSE value can be calculated using equation (8) [10]. 
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𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑦̂𝑖)

2𝑇
𝑖=1

𝑇
 (8) 

description : 

𝑦𝑖  : variable value 

𝑦̂𝑖 : predictive value 

𝑇 : periode 

2.6 Data 

The time series data that be used in this study is secondary data. The time series data consists of two variables, 

namely IDX Composite in points and US Dollar Exchange Rate to Rupiah in rupiah. The IDX Composite data 

and the US Dollar exchange rate to Rupiah are sourced from the website www.Investing.com. The data that be 

used is daily data from November 2019 to August 2021. As a validation of model consistency, modeling is 

carried out using three training data. The first training data is from November 2019 to March 2021. The second 

training data is from November 2019 to May 2021. The third training data is from November 2019 to July 2021. 

3. Result and Discussion  

3.1 Identification of IDX Composite and US Dollar Exchange Rate to Rupiah 

Identification of data patterns is the first step taken before analyzing time series data. It aims to find out the 

description of the data under study. One way to identify data patterns is plotting the data. Based on the Figure 

1(a), it can be seen that the IDX Composite has a fluctuating data pattern. The mean of IDX Composite during 

November 2019 to August 2021 was in the range of 5,637.10 points. The highest fluctuation occurred on March 

24th, 2021, when COVID-19 was first identified, where the IDX Composite decreased to 3,937.63 points. The 

emergence of COVID-19 cases did not only affect to IDX Composite, but this condition also affected to US 

Dollar exchange rate to Rupiah. Based on the Figure 1(b), the information is obtained that the US Dollar 

exchange rate to Rupiah also has a fluctuating pattern. The mean of US Dollar exchange rate to Rupiah during 

November 2019 to August 2021 was in the range of Rp. 14,405.75. The highest fluctuation occurred on March 

23rd, 2020, not far from the highest fluctuation in the IDX Composite. The exchange rate weakened to Rp 

16,575.00. A complete summary of the descriptive statistics for IDX Composite and US Dollar exchange rate to 

Rupiah data is presented in Table 1. 

 

http://www.investing.com/
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Figure 1: IDX Composite and US Dollar Exchange Rate to Rupiah Development. 

during November 2019 – August 2021 

Table 1: Descriptive Statistics of IDX Composite and US Dollar Exchange Rate to Rupiah. 

Descriptive Statistics IDX Composite Exchange Rate 

Mean 5.637,10 14.405,75 

Median 5.940,05 14.370,00 

Standard Deviation 603,04 509,98 

Minimum 3.937,63 13.572,50 

Maximum 6.435,21 16.575,00 

Skewness -0,62 1,66 

Kurtosis -0,97 4,16 

The movement of IDX Composite and US Dollar exchange rate to Rupiah often increases and decreases which 

resulted in indication of volatility. One of these movements can be seen from the return value. Based on the 

Figure 2, IDX Composite return and US Dollar exchange rate to Rupiah return fluctuate around the value of 

zero. IDX Composite return are figured by a blue graph and US Dollar exchange rate to Rupiah return are 

figured by an orange graph. The high increase value is indicated by a large return and a positive sign. The sharp 

decline in value is indicated by a large return and a negative sign. IDX Composite return and US Dollar 

exchange rate to Rupiah return have different fluctuation during November 2019 to August 2021. The highest 

fluctuation occurred at the beginning of the COVID-19 identification as described previously. The highest IDX 

Composite return occurred on March 09th, 2020, which was -0.0658 and the highest US Dollar exchange rate to 

Rupiah return occurred on March 19th, 2020, which was 0.0457. The two returns in the Figure 2 show an early 

indication that the variance is not constant during period November 2019 to August 2021. A complete summary 

of descriptive statistics on IDX Composite return data and US Dollar exchange rate to Rupiah return data are 

presented in Table 2. 
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Figure 2: The Development of IDX Composite Return and US Dollar Exchange Rate to Rupiah Return. 

Table 2: Descriptive Statistics of IDX Composite Return and US Dollar Exchange Rate to Rupiah Return. 

Descriptive Statistics IDX Composite 

Return 

Exchange Rate 

Return 

Mean 0,00 0,00 

Median 0,00 0,00 

Standard Deviation 0,01 0,01 

Minimum -0,07 -0,03 

Maximum 0,05 0,05 

Skewness -0,43 1,78 

Kurtosis 4,15 21,45 

3.2 Var modelling 

The data that be used in this study start from November 2019 to August 2021. The data is divided into three 

training data. The first training data starts from November 2019 to March 2021. The second training data starts 

from November 2019 to May 2021. The third training data starts from November 2019 to July 2021. Modeling 

is carried out on three conditions of training data as model validation in this study. Before doing the modeling, it 

is necessary to identify the order of 𝑝. Identification of order 𝑝 using Matrix Partial Autocorrelation Function 

(MPACF). Based on the identification of MPACF in the three training data, the order of 𝑝 = 2. VAR(2) model 

is the model that chosen to model the three training return data of IDX Composite and US Dollar exchange rate 

to Rupiah. The estimation of VAR(2) model uses Maximum Likelihood Estimation (MLE). 

VAR(2) Model of The First Training Data 

(
Y1,t
Y2,t

) = (
0,0789 −0,0197
−0,0531 0,0345

) (
Y1,t−1
Y2,t−1

) + (
−0,0272 0,0140
−0,0177 0,1010

) (
Y1,t−2
Y2,t−2

) + (
e1,t
e2,t

)  (9) 
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VAR(2) Model of The Second Training Data 

(
𝑌1,𝑡
𝑌2,𝑡

) = (
0,0784 −0,0106
−0,0530 0,0338

) (
𝑌1,𝑡−1
𝑌2,𝑡−1

) + (
−0,0320 −0,0105
−0,0180 0,0976

) (
𝑌1,𝑡−2
𝑌2,𝑡−2

) + (
𝑒1,𝑡
𝑒2,𝑡

)  (10) 

VAR(2) Model of The Third Training Data 

(
𝑌1,𝑡
𝑌2,𝑡

) = (
0,0731 −0,0081
−0,0517 0,0359

) (
𝑌1,𝑡−1
𝑌2,𝑡−1

) + (
−0,0350 −0,0011
−0,0172 0,0985

) (
𝑌1,𝑡−2
𝑌2,𝑡−2

) + (
𝑒1,𝑡
𝑒2,𝑡

)  (11) 

The general assumption of time series is necessary on the VAR(2) model, those are white noise assumption test 

and normality assumption test. White noise assumption test is using Portmanteau test. This test is conducted to 

determine whether the model accepts the assumption of residual white noise or not. Based on the test results of 

the three training data, can be concluded that the VAR(2) model does not accept the white noise residual 

assumption. This condition is supported by the residual of the VAR(2) model from the three training data that 

shown in the Figure 3. 

 

Figure 3: Residual of VAR(2) Model. 
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Based on the Figure 3, it can be seen that the residual of VAR(2) model in the three training data fluctuates. This 

condition can indicate that there is an ARCH effect. Before continuing to another test, it is necessary to test the 

normality residual assumption. The multivariate normality residual test was performed using the Q-Q Plot 

correlation coefficient [11]. The hypothesis that be used in the normality test is 

𝐻0 : residuals are normally distributed multivariate vs 

𝐻1 : residuals are not normally distributed multivariate 

Table 3: Q-Q Plot Correlation Coefficient. 

VAR(2) Model Correlation Coefficient Critical Points Decision 

First Training Data 0,5639 0,0777 Reject 𝐻0 

Second Training Data 0,5500 0,0817 Reject 𝐻0 

Third Training Data 0,5364 0,0864 Reject 𝐻0 

Based on the Table 3, the correlation coefficient of Q-Q Plot on the three training data has a correlation 

coefficient value greater than the critical points at a significant level of 0.05. The test results reject the null 

hypothesis and it can be concluded that the residual of the VAR(2) model in the three training data does not 

have a multivariate normal distribution. This condition is supported by the Figure 4 which shows that there are 

some outliers in the Normal Q-Q Plot from the three training data. 

 

Figure 4: Q-Q Plot Residual of VAR(2) Model. 
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VAR(2) model has residual that does not accept the white noise and multivariate normal assumptions. 

Therefore, further tests were carried out on the residual of the model, using the Lagrange Multiplier (LM) test 

with a significance level of 0.05 to determine the ARCH effects in the VAR(2) model. The hypothesis that be 

used in the LM test is as follows. 

𝐻0: 𝜷𝟏 = ⋯ = 𝜷𝒒 = 𝟎  : there is no Multivariate GARCH effect 

𝐻1: 𝜷𝒒 ≠ 𝟎  : there is Multivariate GARCH effect 

Table 4: Lagrange Multiplier Test. 

VAR(2) Model F-test p-value Decision 

First Training Data 255,4192 0,0000 Tolak 𝐻0 

Second Training Data 291,8609 0,0000 Tolak 𝐻0 

Third Training Data 328,5131 0,0000 Tolak 𝐻0 

Based on the Table 4, the test resulted in the statistical value of LM test on the three training data which had p-

value smaller than the 0.05 level of significance. The test results reject the null hypothesis at a significance level 

of 0.05 and it can be concluded that there is an element of Multivariate GARCH in the residual of the VAR(2) 

model. Indications of volatility due to these fluctuation can be modeled using a volatility model, the BEKK 

GARCH model and the MEWMA model as comparisons. 

4. Bekk garch modelling 

The VAR model that be used is VAR(2). The VAR model has an element of Multivariate GARCH. VAR(2) 

modeling on the three training data was continued to volatility modeling. The volatility model that be used is 

Multivariate GARCH with BEKK representation. The BEKK GARCH model is obtained from the residual 

variance of the VAR(2) model.  

BEKK GARCH Model of the First Training Data 

𝜮𝑡|𝑡−1 = [
0,0103 0,3583
0,0000 0,0650

] [
0,0103 0,3583
0,0000 0,0650

] + [
0,5813 1,7553
0,6603 −1,0273

] 𝒆𝑡−𝑗𝒆𝑡−𝑗
′ [

0,5813 1,7553
0,6603 −1,0273

] +

[
0,0539 0,6105
−0,0394 0,1709

]𝜮𝑡−𝑗|𝑡−𝑗−1 [
0,0539 0,6105
−0,0394 0,1709

]  (12) 

BEKK GARCH Model of the Second Training Data 

𝜮𝑡|𝑡−1 =

[
−0,0009 −0,0138
0,0000 0,5851

] [
−0,0009 −0,0138
0,0000 0,5851

] + [
0,6115 1,3544
0,7272 −0,4913

] 𝒆𝑡−𝑗𝒆𝑡−𝑗
′ [

0,6115 1,3544
0,7272 −0,4913

] +

[
0,0801 0,6891
0,0158 −0,3073

] 𝜮𝑡−𝑗|𝑡−𝑗−1 [
0,0801 0,6891
0,0158 −0,3073

]  (13) 
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BEKK GARCH Model of the Third Training Data 

𝜮𝑡|𝑡−1 = [
0,0327 0,2839
0,0000 0,0090

] [
0,0327 0,2839
0,0000 0,0090

] + [
0,9141 1,6856
0,7311 −1,2743

] 𝒆𝑡−𝑗𝒆𝑡−𝑗
′ [

0,9141 1,6856
0,7311 −1,2743

] +

[
0,0123 0,8539
0,0017 −0,3579

]𝜮𝑡−𝑗|𝑡−𝑗−1 [
0,0123 0,8539
0,0017 −0,3579

]  (14) 

5. Mewma modelling 

In addition to using the BEKK GARCH model, another model is used as an evaluation, that is the Multivariate 

Exponential Weighted Moving Average (MEWMA) model. In MEWMA model, a decay factor is needed where 

the decay factor is determined based on the concept of inverse wishart. Multivariate model can use decay factor 

values close to -0.1 and univariate model can use decay factor values close to 0.1. Based on the test results, it is 

known that the parameter in the three MEWMA models are significant because the p-value is close to zero 

which is less than the 0.05 level of significance. 

MEWMA Model of the First Training Data 

𝜮̂𝑡 = 0.9347𝜮̂𝑡−1 + 0.0653𝒆𝑡−1
, 𝒆𝑡−1  (15) 

MEWMA Model of the Second Training Data 

𝜮̂𝑡 = 0.9436𝜮̂𝑡−1 + 0.0564𝒆𝑡−1
, 𝒆𝑡−1  (16) 

MEWMA Model of the Third Training Data 

𝜮̂𝑡 = 0.9478𝜮̂𝑡−1 + 0.0522𝒆𝑡−1
, 𝒆𝑡−1  (17) 

6. Evaluation 

Evaluation was conducted to determine the performance of the two methods that be used in the three training 

data. In this study, the evaluation was carried out by looking at the RMSE value based on the comparison of the 

estimated value and the actual value of IDX Composite return and US Dollar exchange rate to Rupiah return. 

Based on the results of the analysis obtained a summary of the RMSE value. The model that has a lower RMSE 

can be said to be better than one that has a higher value. The RMSE value can be seen in the Table 5. 

Table 5: The RMSE Value of IDX Composite Return and US Dollar Exchange Rate to Rupiah Return. 

Model 

First Training Data Second Training Data Third Training Data 

r_IHSG r_KURS r_IHSG r_KURS r_IHSG r_KURS 

BEKK GARCH 0,6722 0,0229 1,0144 0,0069 0,9189 0,1027 

MEWMA 0,0117 0,0048 0,0113 0,0046 0,0109 0,0044 

Based on Table 5, it is found that the RMSE value of the BEKK GARCH method is greater than the RMSE 

value of the MEWMA method. The RMSE value of the MEWMA method is small and can be said to have a 
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better forecasting ability than the BEKK GARCH method. Based on the three training data used, the RMSE 

value for the VAR(2)-MEWMA model are not much different. It can be concluded that VAR(2)-MEWMA has a 

consistent ability to predict the volatility of IDX Composite return and US Dollar exchange rate to Rupiah 

return. In this study, the IDX Composite return volatility and US Dollar exchange rate to Rupiah return were 

forecasted for 30 days on September 2021. The data that be used for estimating the parameters of the VAR(2)-

MEWMA model is from November 2019 to August 2021. The VAR(2) model is the model chosen to model the 

IDX Composite return data and US Dollar exchange rate to Rupiah return. The estimation of the VAR(2) model 

uses Maximum Likelihood Estimation (MLE). The complete estimation results of the VAR(2) model are 

presented in the Table 6. Hypotheses for parameter significance testing : 

𝐻0 ∶ 𝜙𝑖 = 0  vs 

𝐻1 ∶ 𝜙𝑖 ≠ 0 

Table 6: Estimating and Testing the Significance of VAR(2) Model Parameters. 

Parameter Estimation Value Standard Eror t-value p-value Decision 

𝜙̂1,11 0,0683 0,0436 1,5665 0.1177 Terima 𝐻0 

𝜙̂1,12 -0,0166 0,1089 -0,1524 0.8789 Terima 𝐻0 

𝜙̂1,21 -0,0532 0,0174 -3,0575 0.0023** Tolak 𝐻0 

𝜙̂1,22 0,0380 0,0434 0,8756 0.3816 Terima 𝐻0 

𝜙̂2,11 -0,0340 0,0440 -0,7727 0.4400 Terima 𝐻0 

𝜙̂2,12 -0,0007 0,1080 -0,0065 0.9948 Terima 𝐻0 

𝜙̂2,21 -0,0166 0,0175 -0,9486 0.3432 Terima 𝐻0 

𝜙̂2,22 0,0971 0,0430 2,2581 0.0243** Tolak 𝐻0 

Description : 

* : significance on α=10% 

** : significance on α=5% 

*** : significance on α=1% 

If the p-value of a parameter is less than the significance level of α, it is decided to reject the null hypothesis and 

conclude that the parameter is significant. Based on the Table 6, it is known that in the VAR(2) model, the 

significant parameters are 𝜙1,21 and 𝜙2,22. The VAR(2) model can be written in a matrix as follows. 

(
𝑌1,𝑡
𝑌2,𝑡

) = (
0,0683 −0,0166
−0,0532 0,0380

) (
𝑌1,𝑡−1
𝑌2,𝑡−1

) + (
−0,0340 −0,0007
−0,0166 0,0971

) (
𝑌1,𝑡−2
𝑌2,𝑡−2

) + (
𝑒1,𝑡
𝑒2,𝑡

) (18) 

or in the form of a non-matrix equation can be written as follows. 

𝑌1,𝑡 = 0,0683𝑌1,𝑡−1 − 0,0166𝑌2,𝑡−1 − 0,0340𝑌1,𝑡−2 − 0,0007𝑌2,𝑡−2 + 𝑒1,𝑡  (19) 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2021) Volume 60, No  3, pp 278-293 

291 
 

𝑌2,𝑡 = −0,0532𝑌1,𝑡−1 + 0,0380𝑌2,𝑡−1 − 0,0166𝑌1,𝑡−2 + 0,0971𝑌2,𝑡−2 + 𝑒2,𝑡  (20) 

The evaluation results conclude that the MEWMA method is better than the BEKK GARCH method in 

estimating the volatility of IDX Composite return and US Dollar exchange rate to Rupiah return. Based on the 

results of parameter estimation in the MEWMA model, the lambda estimation value is 0.9520 with t-test 

statistic value of 209.70. If the p-value of the parameter is less than the 0.05 level of significance, it is decided to 

reject the null hypothesis and conclude that the parameter is significant. Based on the test results, it is known 

that the parameter in the MEWMA model is significant because the p-value is close to zero which is less than 

the 0.05 level of significance. The MEWMA model can be written as follows. 

𝜮̂𝑡 = 0.9520𝜮̂𝑡−1 + 0.0480𝒆𝑡−1
, 𝒆𝑡−1 (21) 

The VAR(2)-MEWMA model is used to predict IDX Composite return and US Dollar exchange rate to Rupiah 

return. The results of the volatility estimation using the VAR(2)-MEWMA model from November 2019 to 

August 2021 and the volatility forecasting using the VAR(2)-MEWMA model in September 2021 are shown in 

the Figure 5. forecasting the value in the future period is based on the value of the previous period and related 

factors [12]. rIHSG Volatility in the Figure 5 is the volatility of the IDX Composite return and rKURS Volatility 

in the Figure 5 is the return volatility of the US Dollar exchange rate to Rupiah. 

 

Figure 5: The Volatility of IDX Composite and US Dollar Exchange Rate to Rupiah. 

The red color in the rIHSG Volatility starting at index 0 to 670 is the result of estimating the volatility of the 

IDX Composite return from November 2019 to August 2021. The blue color in the rIHSG Volatility from index 

671 to 700 is the result of forecasting the volatility of the IDX Composite return in September 2021. The first 
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time COVID-19 virus was identified which caused a drastic decline in the IDX Composite value occurred on 

March 24, 2020 or on the 145th data. The extreme conditions due to the identification of COVID-19 can be well 

predicted using the VAR(2)-MEWMA model as shown in the Figure 9. Based on the Figure 9, it can be 

concluded that The VAR(2)-MEWMA model well predicts the volatility of the IDX Composite return. The 

same applies to the estimation and forecasting of exchange rate return volatility. The orange color on the rKURS 

Volatility from index 0 to 670 is the result of estimating the volatility of the US Dollar exchange rate to Rupiah 

return from November 2019 to August 2021. The blue color of the rKURS Volatility starting at index 671 to 

700 is the result of forecasting the volatility of the US Dollar exchange rate to Rupiah return in September 2021. 

The first time COVID-19 virus was identified which caused the weakening of the US Dollar exchange rate to 

Rupiah occurred on March 23, 2020 or in the 144th data. The extreme conditions due to the identification of 

COVID-19 can also be well predicted using the VAR(2)-MEWMA model as shown in the Figure 9. Based on 

Figure the 9, it can be concluded that the VAR(2)-MEWMA model well predicts the volatility of US Dollar 

exchange rate to Rupiah return. 

7. Conclusions and Suggestions 

The movement of IDX Composite and US Dollar exchange rate to Rupiah often increases and decreases every 

day. This condition can lead to data volatility due to fluctuation. There are several treatments for the volatility of 

multivariate data, one of them can be approached using Multivariate Generalized Autoregressive Conditional 

Heteroskedasticity (MGARCH) model. In addition to the GARCH model, there is another approach that can 

also be used to capture data volatility, that is Multivariate Exponential Weighted Moving Average (MEWMA) 

model. Based on the results of the analysis on the three training data, it was found that the RMSE value of the 

BEKK GARCH method was greater than the RMSE value of the MEWMA method and the three VAR(2)-

MEWMA that be used had consistently predict the volatility of IDX Composite return and US Dollar exchange 

rate to Rupiah return. MEWMA method can be said to have a better predictive ability, so VAR(2)-MEWMA is 

used to model IDX Composite return data and US Dollar exchange rate to Rupiah return data from November 

2019 to August 2021 and is used to predict volatility on September 2021. The results of the volatility estimation 

using VAR(2)-MEWMA model show that extreme conditions on IDX Composite return and US Dollar 

exchange rate to Rupiah return due to the identification of COVID-19 can be well estimated using VAR(2)-

MEWMA model. Then VAR(2)-MEWMA model is used to predict the volatility of the next month, September 

2021. Based on the results of the analysis, it can be concluded that the MEWMA model's ability is quite good in 

predicting volatility in IDX Composite return data and US Dollar exchange rate to Rupiah return data. 

Considering that fluctuations in a commodity are not only influenced by internal factors but can also be 

influenced by external factors such as other economic factors, the next research is expected to include 

exogenous variables that affect volatility forecasting. 
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