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Abstract 

This paper, examines one of the most fundamental and interesting algebraic structures, infinite abelian groups, 

from the perspective of group theory The Theory of abelian groups is generally simpler than that of their non-

abelian counterparts and finite abelian groups are very well understood. Then would like to state whether the 

theory of Structure for infinite abelian group of additive rational number is finitely generated or a divisible 

abelian group and also show examples of each classification. Thus, classify groups by stating whether elements 

are finite or infinite and categories them as infinite abelian Groups. Moreover, an application to homology group 

and rotation in two dimensions is presented, as a demonstration of the structure of infinite abelian groups utility. 

Keywords: groups; finite and infinite abelian groups; finitely generated groups; divisible groups. 

1. Introduction  

The source of finite abelian group theory is grounded mainly in number theory and in the theory of quadratic 

forms. The emergence of a theory of finite abelian groups was first discernible in the late eighteenth and early 

nineteenth centuries in the arguments of Euler, Lagrange, and Gauss. Despite the fact that groups were not yet 

defined and that it needed over half a century before these creatures got a name. It was Kronecker in 1870 who 

introduced in the notion of an abstract abelian group. Working with radical field extensions it must have been 

natural to him to name commutative groups after the Norwegian mathematician Nils Henrik Abel whose 200th 

birthday commemoration was celebrated at Oslo University during that year. Kronecker also re-proved Gauß’s 

theorem for finite abelian groups and provided a primary decomposition for these groups, see van der Waerden 

[13: 149].  
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Van der Waerden [13: 149] also mentions that another proof of Gauß’s theorem appears in Abel’s work and 

Schering, a pupil of Gauß, published a paper about binary quadratic forms in which he proves Gauß’s theorem 

for finite abelian groups. When the theory of groups was first introduced, the attention was on finite groups. 

Now, the infinite abelian groups have come into their own. The results obtained in infinite abelian groups are 

very interesting and penetrating in other branches of Mathematics. This paper presents the most significant 

solutions in infinite abelian groups following the discovering given by Frank Ayres in his Schaum’s Outlines of 

abstract algebra and J Rotman in his book, Theory of Groups. In order to facilitate our study, infinite abelian 

groups are used. The study of abelian groups concerning the study of torsion groups and torsion-free groups and 

also fundamental theorems of finitely generated abelian groups has been defined and shown. Then also the study 

of divisible groups. It is assumed that the reader is familiar with elementary group theory and finite abelian 

groups which will look into briefly with minor proofs accompanied with some motivational statement. 

However, the fundamental theorem of abelian groups has only been stated with examples and not proved. 

Finally, the result of structure theorem of infinity abelian groups can be shown by application in infinite 

dimensional of lie groups and computational of homology groups in algebraic topology. 

1.1 Definitions and Notation 

 This section introduces some basic definitions in group theory. This includes groups, subgroups and normality. 

Then use multiplicative notation to represent the binary operation on the group .In addition, also show some 

examples to illustrate these terms. First and foremost, state the meanings of several shorthand symbols. 

• |: divides.  

• ∀: for all.   

• ∃: exists.   

• ∈: element of. 

• ⇒: implies.   

• R: the set of real numbers. 

• A×B: Cartesian product of sets A and B.  

• Z: the set of the integers. 

•𝒁𝒏: the set of the integers modulo n. Example: {0, 1, 2} for 𝒁𝟑 

• ≅ Isomorphic. Example: The Klein-4 group ≅ 𝑍2×𝑍2. 

•〈𝒙〉: the orbit of 𝑥; that is, the set of all powers of 𝑥. 
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• |S|: The size of set S. Furthermore, this differentiates between different types of ∞, but the largest sets 

discussed here are countably infinite. Example :|{ 0, 1, 2}|= 3. 

A function is a mapping F from set A to set B, where each input from A has exactly one output in B. The 

following are some important properties used throughout this thesis. 

• 1-1: a function f: X → Y is one to one if ∀ x, y ∈ X, f(x) = f(y) ⇒ x = y. 

• Onto: a function f: X → Y is onto if ∀ y ∈ Y, ∃ x ∈ X such that f(x) = y. 

• Bijection: a function f: x → y is a bijection if it is both 1-1 and onto. 

The following table is useful in “translating” multiplication notation into additive notation, 𝑎 and 𝑏 are elements 

of a group G.H and K are subgroups of G.        

Table 1 

Multiplicative 𝑎𝑏 𝑎−1 1 𝑎𝑛 𝑎𝑏−1 𝐻𝐾 𝑎𝐻 

Additive 𝑎 + 𝑏 −𝑎 0 𝑛𝑎 𝑎 − 𝑏 𝐻 + 𝐾 𝑎 + 𝐻 

1.2 Groups 

The main goal is to review some fundamentals in group theory. This will include basic definitions, structures of 

subgroups and direct products, and isomorphism, all of which will be integral in analyzing both finite and 

infinite abelian groups.        

Definition 1.1 Binary Operations 

A binary operation on a set 𝑆 is a function that maps two inputs from 𝑆 back into 𝑆. Expressed 〈𝑠,∗〉, a more 

formal definition is a function ∗ : 𝑆 × 𝑆 →  𝑆. We denote 𝑎 ∗ 𝑏 to mean ∗ (𝑎, 𝑏).The structures discussed herein 

are typically binary operations, but will require several more properties in order to be of use. 

Definition 1.2 Let 𝑆 be a non-empty set and ∗ is a binary operation on 𝑆. A group is an ordered pair (𝑆,∗) that 

satisfies the following axioms: 

• Closure axiom∀ 𝑥, 𝑦 ∈ 𝑆 ⇒ 𝑥 ∗ 𝑦 ∈ 𝑆 

• Identity: A binary operation has an identity, denoted 𝑒, if ∃𝑒∈𝑆 such that ∀𝑥∈𝑆, 𝑥∗𝑒= 𝑥 = 𝑒∗𝑥 

• Inverse: ∀𝑥∈𝑆 has an inverse if there is an element 𝑥−1∈𝑆 such that 𝑥∗𝑥−1 =𝑒 = 𝑥∗𝑥−1 

• Associativity: The operation ∗ is associative if ∀𝑥, 𝑦, 𝑧∈𝑆, (𝑥 ∗ 𝑦) ∗z =𝑥 ∗ (𝑦 ∗ 𝑧). 
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Commutativity: The operation ∗ is commutative if ∀𝑥, 𝑦∈𝑆, 𝑥 ∗ 𝑦=𝑦 ∗ 𝑥.Binary operations do not need to 

exhibit this property, but it is hugely useful when present. In general, refer to the binary operation of a group as 

multiplication, unless otherwise stated. Also, to simplify notation, instead of writing 𝑎 ∗ 𝑏 for elements in a 

group, just write 𝑎𝑏 to denote the multiplication. Additionally, write 𝐸 to mean {𝑒}. 

Example 1.1 𝑄\ {0} is a group under usual multiplication. The identity for this group is 1, and for all 𝑎 ∈

𝑄\ {0}, 𝑎−1 is
1

 𝑎
. Furthermore, 𝑅\ {0} and 𝐶 \ {0} are also groups under multiplication, with the same identity 

and definition of inverses. However, 𝑍\ {0} is not a group under multiplication, although it is associative and 

does have an identity, since it lacks the existence of inverses. For example, 4 ∈ 𝑍\ {0}, but 1/4∉Z\ {0}. 

Note〈𝑹,∗〉, 〈𝑪,∗〉and 〈𝑸,∗〉 are not groups under multiplication because zero has no inverse. 

Definition 1.3 A nonempty subset 𝐻 of a group 𝐺, is a subgroup if 𝐻 forms a group under the binary operation 

in 𝐺. 𝐻 is a proper subgroup of 𝐺 if first it is a subgroup, and second, is a proper subset of 𝐺. 

If 𝐻 is a subgroup of 𝐺, write𝐻 ≤  𝐺. If 𝐻 is a proper subgroup of 𝐺,write 𝐻 <  𝐺.The subgroup {𝑒} is called 

the trivial subgroup of 𝐺; a subgroup that is not {𝑒} is called a non-trivial subgroup of 𝐺. 

Example 1.2 𝑆=square root of unit = {±1} is (𝑆,∗)a group under usual multiplication. 

Cayley table  

Table 2 

   ∗    1 −1 

   1    1 −1 

−1 −1    1 

1. Closure axiom: hold   e.g. 1x-1=-1 

2. Associative: 1x (1x-1) =-1x (1x1) 

3. Identity: 1x1=1, -1x-1=1, e=1 

4. Existence of inverse: inverse of 1=1, inverse of -1= -1 

5. Commutative property:  1x-1=-1x1 

(𝑆,∗)   is a finite abelian group of order 2 

Definition 1.4 Normal Subgroups 

A normal subgroup 𝐻 of 𝐺 is a subgroup with the additional property that 
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For all 𝑛 ∈  𝐺 , 𝑛𝐻𝑛−1  =𝐻 . In abelian groups, all subgroups trivially have this property, because 𝑛𝐻𝑛−1 = 

𝑛𝑛−1𝐻 =𝐻. 

Example 1.3 The alternating group 𝐴𝑛of even permutation is a normal subgroup of 𝑆𝑛. Since 

   (1   2) ∈𝑆𝑛      (1 3 2) ∈𝐴𝑛       (1 2 3) ∈𝐴𝑛 (1 2) (1 2 3) (1 2)−1= (1 3 2)               

This section introduces finite and infinite cyclic groups, direct products, quotient groups, and order .Then show 

that the cyclic property is passed down to subgroups. Finally, then prove Lagrange’s Theorem and two 

important corollaries of the theorem. 

Definition1.5 A finite cyclic group 𝐺  =<𝑥 > of order 𝑚  consists of the elements 𝑥0, 𝑥1, 𝑥2.  .  . 𝑥𝑚−1 where 

𝑥𝑚−1≠𝑒=𝑥𝑚. The element, 𝑥 is called a generator of 𝐺. An infinite cyclic group is defined 𝐺 =<𝑥>= {𝑥𝑛 :𝑛 ∈

𝑍} and |𝐺| = ∞. Note that if a group operation is additive, define <𝑥>:= {𝑛𝑥 :𝑛 ∈ 𝑍}. Here,  

𝑛𝑥 = 𝑥 + 𝑥+.  .  . +𝑥, 𝑛 times. 

Example 1.4 A Group G is cyclic ⇔ 

• 𝐺 ≅  𝑍,if |𝐺| =  ∞, represented by (𝑍, +) is an infinite cyclic group generated by 1  

• 𝐺 ≅ 𝑍𝑚,if |𝐺|equally shown by (𝑍(𝑚), +) as the set of integers modulo m is a finite cyclic group generated by 

1. 

Theorem 1.1 A Subgroup of a cyclic group is cyclic. 

Proof: If 𝐻 is a trivial subgroup of 𝐺, then 𝐻 =<  𝑒 > or 𝐻 =  𝐺 is cyclic and we are done. Now suppose 𝐻 is 

a nontrivial subgroup of 𝐺. 

 First we take |𝐺| to be finite and cyclic so let 𝑏  be a generator. Let 𝑛 be the smallest positive integer such that  

𝑏𝑛 ∈ 𝐻.We wish to prove 𝐻=〈𝑏𝑛〉. 

 Since   𝑏𝑛 ∈ 𝐻, and 𝐻 is a group, we have 〈𝑏𝑛〉⊆𝐻. 

Now suppose ℎ ∈ 𝐻.Then ℎ ∈ 𝐺,and there exists positive integer 𝑎  such that  

ℎ = 𝑏𝑎.By the division algorithm, there exist integers𝑞, 𝑟 such that 𝑎 = 𝑞𝑛 + 𝑟  with  

0 ≤ 𝑟 < 𝑛 .Thus ℎ = 𝑏𝑎 = 𝑏𝑞𝑛+𝑟 = 𝑏𝑞𝑛𝑏𝑟 = (𝑏𝑛)𝑞𝑏𝑟 . 𝑇ℎ𝑢𝑠 𝑏𝑟 = ℎ(𝑏𝑛)−𝑞. Note that ℎ, 𝑏𝑛 ∈ 𝐻. 𝐴𝑠 𝑏𝑟 ∈

𝐻𝑎𝑛𝑑 0 ≤ 𝑟 < 𝑛 , the minimality condition defining  𝑛 implies 𝑟 = 0.Thus ℎ = (𝑏𝑛)𝑞𝑏0 = (𝑏𝑛)𝑞𝑒=(𝑏𝑛)𝑞 ∈

〈𝑏𝑛〉.Hence𝐻⊆〈𝑏𝑛〉, and  𝐻 = 〈𝑏𝑛〉 is cyclic. If  〈𝑏〉 has infinite order, and  𝐻 is a subgroup 𝑜𝑓 〈𝑏〉,let  𝑎 be the 

least positive integer with 𝑏𝑎 ∈ 𝐻.If 𝑏𝑎 ∈ 𝐻 for some 𝑛 > 𝑎,we can show 𝑎/n by an argument similar to the 

finite case. Hence,𝐻 = 〈𝑏𝑎〉.            □ 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2021) Volume 59, No  2, pp 279-303 

 

284 
 

Definition 1.6(external) Direct Products 

Given groups 𝐴  and 𝐵 with operations (∗ 𝐴)  and (∗ 𝐵),  respectively, the direct product 𝐴 × 𝐵  is the 

set {(𝑎, 𝑏) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}, with the operation ∗ defined by (𝑎1,𝑏1) ∗ (𝑎2,𝑏2) = (𝑎1∗𝑎2, 𝑏1∗𝑏2). An 

important result of this definition is the property that, given groups 𝐴 and  𝐵, their direct product is also a group. 

The 𝐴 and  𝐵 portions of the elements of 𝐴 × 𝐵 do not interact, so the operation preserves the original closure, 

associativity, and identities of the original groups for each component. 

Example 1.5 (𝑅, +) is a group. Therefore,𝑅 × 𝑅 =  {(𝑥, 𝑦): 𝑥, 𝑦 ∈ 𝑅}, with (𝑎, 𝑏)  + (𝑐, 𝑑)  =  (𝑎 +  𝑐, 𝑏 +

 𝑑), is also a group. 

Proposition 1.1 The Direct product of two groups is again a group 

1) For all  (𝑝, q)(𝑝1,𝑞1) ∈ 𝑃 ×  𝑄,we have  𝑝, 𝑝1 ∈  𝑃,  𝑞, 𝑞1 ∈ 𝑄,so𝑝, 𝑝1 ∈ 𝑃 and 𝑞, 𝑞1 ∈Q because 𝑃 and 

𝑄 Are closed under multiplication .so (𝑝𝑝1,𝑞𝑞1) ∈ 𝑃 ×  𝑄.Thus a binary operation 

 On  𝑃 ×  𝑄 or in other words 𝑃 ×  𝑄 is closed under the operation multiplication   

2) Associativity in 𝑃 × 𝑄 Follows clearly from associativity in 𝑃 and 𝑄.For any (𝑝, q)(𝑝1,𝑞1),(𝑝2, 𝑞2)∈ 

𝑃 × 𝑄, Thus 

                        [(𝑝, 𝑞) (𝑝1, 𝑞1)] (𝑝2, 𝑞2) 

                    = (𝑝𝑝1,𝑞𝑞1) (𝑝2, 𝑞2) 

                    = ((𝑝𝑝1)𝑝2, (𝑞𝑞1 )𝑞2 ) 

                    = ((𝑝 ( 𝑝1, 𝑝2), q (𝑞1, 𝑞2  )) 

                    = (p, q) (𝑝1, 𝑝2,𝑞1, 𝑞2  ) 

                    = (p, q) [(𝑝1, 𝑞1) (𝑝2, 𝑞2 )] and so the operation on 𝑃 × 𝑄 is associative Check for the identity 

element of 𝑃 × 𝑄. The only guess which is reasonable would be (1, 1) = (1𝑝,1𝑞).indeed, (𝑝, 𝑞) (1, 1) = 

( 𝑝, 𝑞) for all (p, q)∈ 𝑃 × 𝑄.Thus (1, 1) is the Perfect identity of the product 𝑃 × 𝑄. 

3) Check for the inverse of ( 𝑝, 𝑞)∈ 𝑃 × 𝑄. 

Let (𝑝−1,𝑞−1) be the inverse. Indeed  

       (𝑝, 𝑞) (𝑝−1,𝑞−1) = (𝑝𝑝−1  ,𝑞𝑞−1  ) = (1𝑝, 1𝑞) ∀ ( 𝑝, 𝑞)∈ 𝑃 × 𝑄 

  So all (𝑝, 𝑞)∈ 𝑃 × 𝑄 has the perfect inverse in 𝑃 × 𝑄 which is (𝑝, 𝑞)−1= (𝑝−1,𝑞−1) 
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   Thus 𝑃 × 𝑄 is a group since it satisfies all the four axioms of the group that is Closure, associative, 

identity and inverse.           □                                                                                       

Definition1.7 If 𝐻 is a subgroup of a group𝐺, and 𝑔 ∈  𝐺, then the left coset of 𝐻 in 𝐺 is the set 𝑔𝐻 = {𝑔ℎ : h ∈ 

H}. A right coset of 𝐻 in 𝐺 is the set 𝐻𝑔= {ℎ𝑔: h ∈ H}. 

Lemma1.1 A subgroup 𝐻 is a normal subgroup of group G if and only if 𝑔𝐻 = 𝐻𝑔 for all 𝑔∈ G. 

Proof: Let 𝐻 be a subgroup of group 𝐺. If 𝑔𝐻 =𝐻𝑔 for all 𝑔 ∈  𝐺, we have 𝑔𝐻𝑔−1 = H. Thus 𝑔𝐻𝑔−1⊆𝐻, so 

𝐻 is normal in G. Suppose 𝐻 is normal in 𝐺. Then if 𝑔∈𝐺, 𝑔𝐻𝑔−1⊆𝐻and 𝑔−1𝐻𝑔= 𝑔−1𝐻(𝑔−1)−1⊆𝐻. Now, 

since 𝑔𝐻𝑔−1⊆𝐻, 𝐻=𝑔(𝑔−1𝐻𝑔)𝑔−1, out of which we have 𝐻 = 𝑔𝐻𝑔−1 or equivalently 𝑔𝐻=𝐻𝑔. □ 

Definition1.8 If the subgroup 𝐻 of 𝐺 is normal, then the sets of left (right) cosets of 𝐻 in 𝐺 is itself a group 

called factor group of 𝐺 by 𝐻 (the quotient group of   𝐺 by 𝐻)𝐺/𝐻. 

Theorem 1.2 (Holder 1889) 

 Let  𝐺  be a group and 𝐻  be normal subgroup of 𝐺 .The set 𝐺/𝐻 =  {𝑎ℎ\𝑎 ∈ 𝐺}  is a group operation 

(𝑎𝐻)(𝑏𝐻) = 𝑎𝑏𝐻  

Proof: Let 𝐻 be a normal subgroup of group 𝐺 and 𝑎, 𝑏∈ G.The operation must be independent of the choice of 

coset representation. Let  𝑎𝐻 = 𝑎′𝐻 and 𝑏𝐻 = 𝑏′𝐻. Then 𝑎′ = 𝑎ℎ1  and 𝑏′ = 𝑏ℎ2  for some ℎ1,ℎ2 in 𝐻  and 

therefore 𝑎′𝑏′𝐻 = 𝑎ℎ1𝑏ℎ2𝐻 = 𝑎ℎ1𝐻𝑏 = 𝑎𝐻𝑏 = 𝑎𝑏𝐻.Note that 𝐻 is an identity element for 𝐺/𝐻. Next, (𝑎𝐻) 

(𝑏𝐻) = 𝑎(𝑏𝐻) 𝐻= 𝑎( 𝑏𝐻) (𝐻) = ( 𝑎𝑏) (𝐻𝐻) = 𝑎𝑏𝐻 shows the multiplication is well-defined. Associativity holds 

since (𝑎𝐻𝑏𝐻)𝑐𝐻 = (𝑎𝑏𝐻)𝑐𝐻 = 𝑎𝑏𝑐𝐻= 𝑎𝐻(𝑏𝑐𝐻) = 𝑎𝐻(𝑏𝐻𝑐𝐻),𝑒𝐻 = 𝐻 is the identity and𝑎−1𝐻 is the inverse 

of 𝑎𝐻.                                        □ 

Example 1.6 Let 𝐺 =  𝐺𝐿𝑛(𝑅)  =  {𝐴 ∈ 𝑀𝑛(𝑅): 𝑑𝑒𝑡 (𝐴)  ≠ 0}. Two matrices are in the same coset if and only 

if they have the same determinant. 𝑁 =  {𝐴 ∈ 𝐺: 𝑑𝑒𝑡 (𝐴) =  1} is a normal subgroup of 𝐺. Note that 𝑎𝑁 = 𝑏𝑁 

if and only if 𝑏−1𝑎 ∈ 𝑁. 

But 𝑏−1𝑎 ∈𝑁  if and only if 𝑑𝑒 t (𝑏−1𝑎 ) = 1 if and only if 𝑑𝑒𝑡 (𝑎)  =  𝑑𝑒𝑡 (𝑏).   Also, 𝑎𝑁𝑏𝑁 = 𝑎𝑏𝑁  and 

𝑑𝑒𝑡 (𝑎𝑏)  =  𝑑𝑒𝑡 (𝑎) 𝑑𝑒𝑡 (𝑏),  so the quotient group 𝐺/𝑁  is isomorphic to the nonzero real numbers under 

multiplication. 𝐺𝐿𝑛(𝑅)/𝑆𝐿𝑛(𝑅)  ≅  𝑅\ {0}. 

Definition1.9Let 𝐻 be a subgroup of a group 𝐺. Then the index of 𝐻 in 𝐺 is defined to be the number of left 

cosets of 𝐻 in 𝐺. 

 Denote the index of 𝐻 in G by [𝐺: 𝐻].   

Definition1.10 Order of element 
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The order of an element 𝑔 in a group 𝐺 is the smallest positive integer 𝑛 such that𝑔𝑛 = 𝑒 (In addition notation 

this would be 𝑔𝑛 = 0).If no such integer exist,𝑔 has infinite order.The order of an element 𝑔 is denoted by 

𝑂(𝑔) or |𝑔| 

Lemma 1.2Let 𝐺 be a group and 𝐻 ≤ 𝐺.Then every right coset of 𝐻 in 𝐺 has the 

Same cardinality as 𝐻.In particular, any two right cosets have the same cardinality as each other. 

Proof: Let 𝐻𝑔 be a right coset define   𝜑 ∶ 𝐻 → 𝐻𝑔 by   𝜑(ℎ) = ℎ𝑔 

𝜑 is one to one if  𝜑(ℎ1) = 𝜑(ℎ2),  then ℎ1𝑔 = ℎ2𝑔  by right cancellation we haveℎ1 = ℎ2 , for all  ℎ1,ℎ2 ∈

𝐻 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡  𝜑 is onto, take 𝑦 ∈ 𝐻𝑔.Then  𝑦 = ℎ𝑔 for some ℎ ∈ 𝐻 .In addition, 𝜑(ℎ) = ℎ𝑔 = 𝑦. Thus 𝜑  is 

onto. Since  𝜑  is one to one and onto, thus a bijection 

|𝐻| = |𝐻𝑔|  □ 

Theorem1.3 (Lagrange’s Theorem) If 𝐺 is a finite group and 𝐻 is a subgroup of 𝐺, then the order of 𝐻 divides 

the order of 𝐺. Furthermore, the index of 𝐻 in 𝐺 equals |𝐺|/|𝐻| 

Proof: Let 𝐻𝑎1, .  .   .    .   .  𝐻𝑎𝑛  be the right cosets of 𝐻 in 𝐺, then 

(By Equivalent classes) let G=𝐻𝑎1 ∪  .  .  .  .  ∪ 𝐻𝑎𝑛 be the disjoint union. 

|𝐺| = |𝐻𝑎1 ∪.   .   .   . 𝐻𝑎𝑛| 

= |𝐻|+.  .   .   . + |𝐻| 

By previous lemma 1.2|𝐻| = |𝐻𝑎| 

= 𝑛|𝐻|,So        |𝐻|/|𝐺| 

𝑛is the number of distinct right cosets of 𝐻 in 𝐺.                         □ 

In general, if 𝑛 divides|𝐺|, then there does not necessarily exist a subgroup 𝐻 of 𝐺 such that|𝐻|  =  𝑛. however, 

in the case of finite abelian groups such subgroups do exist, this will see later. 

Corollary1.1 The order of any element of a finite group divides the order of the group. 

 Proof: Let 𝐺 be a finite group and let 𝑎 ∈𝐺. Then the order of 𝑎 in 𝐺 is the same as the order of <𝑎> which 

divides the order of 𝐺.                                              □ 

Corollary 1.2 Let 𝐺 be a finite group, and let 𝑎 ∈ 𝐺.Then 𝑎|𝐺| = 𝑒 
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Proof: Note 𝑜(𝑎) = |〈𝑎〉|/|𝐺|  by Lagrange’s Theorem.Hence  |𝐺| = 𝑛. 𝑜(𝑎) for some 𝑛 ∈ 𝑍. 

  Then     𝑎|𝐺| = 𝑎𝑛.𝑜(𝑎) = (𝑎|𝑎|)
𝑛

= 𝑒𝑛 = 𝑒     □ 

Corollary 1.3 Group of prime order is cyclic 

Proof: Since  |𝐺| = 𝑝 > 1, 𝐺 has a non-identity element so take any 

𝑥 ∈ 𝐺, 𝑥 ≠ 𝑒 Then by Lagrange’s Theorem𝑜(𝑥) = |〈𝑥〉|/|𝐺| Since 𝑝 is prime,𝑜(𝑥) = 1 𝑜𝑟 𝑜(𝑥) = 𝑝since 𝑥 ≠

𝑒, 𝑜(𝑥) ≠ 1. Hence 𝑜(𝑥) = 𝑝.This means  〈𝑥〉 has the same number of elements as 𝐺, so 𝐺=〈𝑥〉.  

1.3 Isomorphism Theorems 

This section defines mappings as homomorphisms and isomorphism. Then also state the isomorphism theorems 

which will be important later in decomposing abelian groups. 

Definition1.11 A homomorphism𝜑  from a group 𝐺 to a group 𝐻 is a mapping from 𝐺 into 𝐻 that preserves 

the group operation that is for all𝑎, 𝑏∈𝐺, 𝜑(𝑎𝑏) = 𝜑(𝑎) 𝜑(𝑏). 

Definition1.12If 𝜑  is a homomorphism from 𝐺to 𝐻, then the kernel of 𝜑 is defined by ker𝜑 = {𝑔∈𝐺: 𝜑(𝑔) 

=𝑒}. 

Note that 𝜑(𝑒𝐺) =𝑒𝐻. However, the subscripts 𝐺 and 𝐻 will not be written as the locations of the identities are 

clear, and in the interests of simpler notation. 

Example 1.7 Let  𝐺𝐿(𝑛, 𝑅)  be the multiplicative group of all invertible 𝑛 × 𝑛  matrices, 𝐴, 𝐵 ∈

𝐺𝐿(𝑛, 𝑅) det(𝐴𝐵) = 𝑑𝑒𝑡𝐴𝑑𝑒𝑡𝐵 .This means that it is a homomorphism mapping 𝐺𝑙(𝑛, 𝑅)  into the 

multiplicativeGroup (𝑅 ∗)of non-zero real numbers. 

Example 1.8Let 𝐺 be a group and 𝑁 a normal subgroup of 𝐺. Then the homomorphism 

𝜋: 𝐺 →  𝐺/𝑁 

𝑔 →  𝑔𝑁 

is called the natural homomorphism of 𝐺 onto 𝐺/𝑁.  Note that 𝜋(𝑔1, 𝑔2) = 𝑔1𝑔2𝑁 = 𝑔1𝑁𝑔2𝑁 = π (𝑔1) π (𝑔2), 

and 𝑁 =  𝑘𝑒𝑟 (𝜋) 

Proposition 1.2 The complete preimage of a subgroup of 𝐺/𝑁 is a subgroup of 𝐺.  

Proof: Let 𝑁  be a subgroup of group 𝐺.  Let π : 𝐺 →  𝐺/𝑁  with 𝑔 →  𝑔𝑁 be the natural homomorphism. 

Let𝑔1𝑔2𝑁 ∈  𝐺/𝑁. Then 𝑔1𝑔2
−1𝑁 = 𝑔1𝑁𝑔2

−1𝑁 =𝑔1𝑁(𝑔2𝑁)−1by one step subgroup test, Hence the preimage 

is closed under multiplication and inverses. □ 
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Definition1.13An Isomorphism𝜑 from a group 𝐺 to a Group Ḡ is a one-one mapping (or function) from 𝐺 onto 

Ḡ that preserves the group operation. That is𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏)∀ 𝑎, 𝑏 ∈ 𝐺.If there is an isomorphism from 𝐺 

onto Ḡ, it is said that 𝐺 and Ḡ are Isomorphic and Write 𝐺 ≅  Ḡ 

Theorem1.4 𝒁 is the only infinite cyclic group (up to isomorphism). 

Proof: Let 𝑮 be an infinite cyclic group. Then 𝑮 =<𝑔>= {𝑔𝑘 :𝑘 ∈ 𝑍} for some k∈𝑮. 

 Let                           𝟇: 𝒁→ 𝑮 

      𝑘→ 𝑔𝑘. 

1. ∀𝑥, 𝑦 ∈ 𝒁,𝜙(𝑥 + 𝑦) = 𝑔(𝑥 + 𝑦) = 𝑔𝑥 ∗ 𝑔𝑦 =  𝟇 (𝑥) ∗ (𝟇𝑦). So  𝟇is a homomorphism 

2. ∀𝑥, 𝑦 ∈ 𝒁, 𝟇(𝒙) = 𝟇(𝒚)⇔𝑔𝑥 = 𝑔𝑦⇔ 𝑥 = 𝑦 (to within mod k, if G is finite) 𝟇 is one to one 

3. ∀ 𝑦 ∈ 𝑮, 𝑦 = 𝑔𝑘. Then 𝟇(𝑘)=𝑔𝑘 = 𝑦, is 𝟇 onto. 

Therefore, 𝟇  is isomorphism and 𝑮 ≅ 𝒁.   □ 

Remark: Every cyclic group of infinite order is isomorphic to the additive group Z and every cyclic group of 

finite order n is isomorphic to the additive group Zn. 

2. Structure Theorems for finite Abelian Groups 

A group 𝐺 with binary operation is abelian if, for all 𝑔 , ℎ ∈ 𝐺,  𝑔 ∗ ℎ = ℎ ∗ 𝑔. It is customary to use "+" for the 

binary operation in abelian groups. One of the concepts which reformulate additively and generalize is the 

concept of "direct product”. In abelian Groups it is customary to talk about "direct sum" instead of "direct 

product”. Then note that the direct sum of abelian groups is again abelian. Moreover, call direct sums of infinite 

cyclic Groups free abelian Groups. Direct sums satisfy an important homomorphism property which gives rise 

to the important fact that every Abelian group is a homomorphic image of a free abelian group. In this section, 

first make the transition from multiplicative notation to additive notation since our  primarily focus is on abelian 

groups .Then define finite and infinite abelian groups and give some examples .Afterward also alter some 

definitions (i.e. order in additive notation). Then prove a corollary to Cauchy’s Theorem.  

Proposition 2.1 Prove that if 𝐺 is abelian and 𝐻 is a subgroup of 𝐺, then 𝐺/𝐻 is abelian.  

Solution:  (𝑓 + 𝐻)+ (𝑔 + 𝐻) = (𝑓 + 𝑔) + 𝐻= (𝑔 + 𝑓) + 𝐻 = (𝑔 + 𝐻) + (𝑓 + 𝐻) □ 

Remark: since cyclic groups are abelian, thus now use additive notation. 

Definition 2.1A finite abelian cyclic group 𝐺=〈𝑎〉  of order 𝑚 consists of the elements 0, 𝑎, 2𝑎, … … . , (𝑚 −

1)𝑎.Also, 𝑚𝑎 = 0 and  𝑛𝑎 ≠ 0 whenever1 ≤ 𝑛 ≤ 𝑚 − 1.An infinite abelian cyclic group is defined when  

𝐺=〈𝑎〉 = {𝑛𝑎: 𝑛 ∈ 𝑍} and |𝐺|=∞ 
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For finite groups, since 𝑚𝑎 = 0, compute just as with the integers mod 𝑚; thus finite 𝐺 of order 𝑚 is isomorphic 

to the additive group 𝑍𝑚 of residue classes of the integers mod 𝑚. All finite cyclic groups of the same order 𝑚 

are isomorphic, so denote them all as 𝑍𝑚. 

Proposition 2.2 Cyclic groups are abelian 

Proof: Let 𝐺=〈𝑎〉.If 𝑔1, 𝑔2 ∈ 𝐺,then 𝑔1 = 𝑚𝑎 𝑎𝑛𝑑 𝑔2 = 𝑛𝑎 for some 𝑚, 𝑛 ∈ 𝑍. 

Then               𝑔1 + 𝑔2 = 𝑚𝑎 + 𝑛𝑎 

           = (𝑚 + 𝑛)𝑎 

                                      = (𝑛 + 𝑚)𝑎 

                                      = 𝑛𝑎 + 𝑚𝑎 

                                      = 𝑔2 + 𝑔1                                                                                 □ 

Definition 2.2 for 𝐺 an Abelian group, and 𝑔∈𝐺, the order of 𝑔 in 𝐺 is the smallest 𝑛 ∈ 𝑁 such that 𝑛𝑔 = 𝑒. If 

there is no such 𝑛 ∈ 𝑁, we say 𝑔 is of infinite order.We will denote the order of 𝑔 as 𝑜(𝑔). 

Definition2.3 A 𝑝-group is a group, in which the orders of all the elements consist only of powers of a fixed 

prime, 𝑝 

Definition2.4 For a finite group 𝐺 and a prime number 𝑝, a subgroup 𝑝 of 𝐺 is called a Sylow 𝑝-subgroup of 𝐺 

if |𝑝| = 𝑝𝛼 for some integer 𝛼 ≥  1 such that 𝑝𝛼 is a divisor of |𝐺| but 𝑝𝛼+1 is not.  

Corollary 2.1 (Corollary to Cauchy’s Theorem) A finite group,𝐺 is a 𝑝-group if and only if |𝐺| = 𝑝𝑛 for some 

prime 𝑝, and some 𝑛 ∈ 𝑁. 

Proof: Let 𝐺 be a finite 𝑝-group, so that the elements of 𝐺 have order of the form 𝑝𝑛 for some fixed prime 𝑝, 

and some 𝑛 ∈ 𝑁. Cauchy’s Theorem implies that all subgroups of 𝐺 must have orders of the form 𝑝𝑛.  Thus, |𝐺| 

=𝑝𝑛. Conversely, if|𝐺| = 𝑝𝑛 for some prime 𝑝, and some 𝑛 ∈ 𝑁, then by Lagrange’s Theorem, the order of 

every element in 𝐺 must divide 𝑝𝑛. Thus the order of every element in 𝐺 must be of the form 𝑝𝑖 for some 𝑖 ∈

𝑁. Therefore, 𝐺 is a 𝑝-group. □ 

Theorem 2.1 The Fundamental Theorem of Finite abelian Groups. Every finite Abelian group 𝐺 is the direct 

sum of cyclic groups, each of prime power order. 

Example 2.1Find all abelian groups, up to isomorphism, of order 56 

We first split 𝐺 into p-groups. |𝐺| = 56 = 23. 7 
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𝐺 ≅ 𝐺23⊕𝐺7 

For𝐺23, look at the exponent. 

         3             𝑍23⊕𝑍71= 𝑍8⊕𝑍7 

2, 1          𝑍22⊕𝑍21⊕𝑍71=𝑍4⊕𝑍2⊕𝑍7 

1, 1, 1      𝑍21⊕𝑍21⊕𝑍21⊕𝑍71 = 𝑍2⊕𝑍2⊕𝑍2⊕𝑍7 

For 𝐺7, there is only one way to express the group. Thus, 𝐺 is isomorphic to one of the following  

        𝑍8⊕𝑍7 

        𝑍4⊕𝑍2⊕𝑍7 

𝑍2⊕𝑍2⊕𝑍2⊕𝑍7 

Theorem2.2 (Invariant Factor Decomposition) Let 𝐺 be a finite abelian group. Then 𝐺 is isomorphic to a 

direct sum of cyclic groups 𝑍𝑛1
⊕𝑍𝑛2

⊕···⊕𝑍𝑛𝑘
 such that 𝑛𝑖|𝑛𝑖−1 for all 

i = 2,3... k. Furthermore, the 𝑛𝑖 are uniquely determined by 𝐺. 

Example 2.2 Suppose G = 𝑍8⊕𝑍8⊕𝑍4⊕𝑍2⊕𝑍2⊕𝑍27⊕𝑍3⊕𝑍3⊕𝑍11⊕𝑍11 

 Write out these prime powers in matrix format, one row for each prime base, left-justified, ordered from the 

least exponent to the greatest, as follows. 

 2         2         4              8             8  

                                                   3               3            27  

                                                                   11            11 

                             2          2        12          264          2376 

Observe that every column consists of distinct prime powers. As you probably have guessed, then  conclude that 

   𝑛1 = 8 . 27 .  11 = 2376 

      𝑛2 = 8 . 3  .  11 = 264 

  𝑛3 = 4 .3 = 12 
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𝑛4 = 2 = 𝑛5 

This consists of successive divisors—each number divides the preceding number. 

That is 𝐺 = 𝑍2⊕𝑍2⊕𝑍12⊕𝑍264⊕𝑍2376 with 2|2|12|264|2376 

3. Torsion and Torsion-free Groups 

This section looks at infinite abelian groups and define when a group is torsion, torsion-free, and mixed. 

Consider the following three examples of abelian groups:𝑄 the additive group of rationals; 𝑄 𝑍⁄  the factor group 

of the additive group of the rationals by the integers; ℂ, the multiplicative group of complex numbers. Each of 

these groups is not isomorphic to the others, but how would we prove that? One way is to examine the orders of 

the elements of the groups. Now every element of 𝑄 except 0 is of infinite order and every element of 𝑄 𝑍⁄  is of 

finite order. For if 𝑟 ∈ 𝑄, r = 𝑚/𝑛 where 𝑚, 𝑛 are two integers.   Thus m(𝑟 +  𝑍)  =  𝑚𝑟 +  𝑍 =  𝑛 +  𝑍 =

 𝑍. Let us, to avoid confusion, continue to use the multiplicative notation for ℂ. We assert that ℂ has elements of 

infinite order and also elements of finite order. Recall that the identity of ℂ is 1. Note that (−1)3 = 1 implies that 

-1 is of order 3 and 4𝑟 = 1 if and only if r = 0. Hence -1 is of finite order and 4 is of infinite order. Summarizing, 

we have  

(i) 𝑄 has every element but the identity of infinite order.  

(ii) 𝑄 𝑍 ⁄ has every element of finite order.  

(iii) ℂ have elements of finite order and elements of infinite order.  

Definition3.1 A torsion group is a group in which every element is of finite order. 

Example 3.1 All finite groups are torsion groups. If 𝐺 is a finite group and 𝑥∈𝐺, then  

𝑂 (𝑥) divides 𝑂 (𝐺) < ∞. Thus 𝐺 is a torsion group. 

Example 3.2 G =∏ 𝑍𝑝 = 𝑍𝑝 × 𝑍𝑝 ×.  .  .∞
𝑘=1  

is a torsion group. Let 𝑥∈𝐺. Then 𝑝𝑥 = 𝑒, hence 𝑂 (𝑥)≤ 𝑝. So, 𝐺 is a torsion group expressed as an infinite 

direct product. 

Theorem 3.1 Show that the class of torsion abelian groups is closed under direct sums, quotients and subgroups. 

Proof. Let H be an abelian group. Assume  ℎ ∈ 𝑇( ⊕
𝛼∈𝑗

𝐻𝛼) .Then there exists a finite 𝑛 Suchthat 𝑛ℎ =

⊕ 𝐸𝛼 .Therefore  ℎ ∈⊕ 𝑇(𝐻𝛼) . Assume ℎ ∈⊕ 𝑇(𝐻𝛼),  with o ( ℎ𝑖) = 𝑛𝑖  in 𝐻𝑖 . Then ∏
𝑎𝑙𝑙 𝑖

𝑛𝑖  is finite, which 

means ℎ has finite order in ⊕ 𝐻𝛼.Thus, torsion groups are closed under direct sums.    

Let 𝑎 ∈ 𝑇, 𝑜(𝑎) = 𝑛  in  𝑇 and (𝑎 + 𝑁) ∈ 𝑇/𝑁.Then  𝑛(𝑎 + 𝑁) = 𝑛𝑎 + 𝑛𝑁 = 𝑒 + 𝑁 = 𝑁,hence the order of 

𝑎 + 𝑁 is a divisor of 𝑛 in 𝑇/𝑁. Thus, torsion groups are closed under quotients. Let 𝑇 be a torsion abelian 
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group,𝐻 a subgroup of 𝑇and ℎ ∈ 𝐻.Then the order of ℎ in 𝐻 divides the order of ℎin 𝑇,which is finite. Thus, the 

order of ℎ in 𝐻 is finite, so 𝐻 must also be torsion, proving closure of subgroups.                 □ However, the 

torsion class is not closed under direct products, which will be demonstrated in this example. 

Example 3.2Let 𝐺=𝑍2 × 𝑍3 × 𝑍5 × 𝑍7 ×.  .  .   .be a set of all primes. Then the order of set 𝐺  which is the 

smallest positive integer will be infinite, since no finite 𝑛 ≠ 0 exists such that 𝑛(1,1,1, .  .  . ) = 𝑒 

Definition 3.2 An abelian group𝐺, is torsion-free if all its elements, except for the identity, have infinite order. 

The torsion part of 𝐺 is the set of all elements in 𝐺 of finite order, denoted by 𝑇 (𝐺). 

Example 3.3 Both 𝑄 and 𝑍 have an infinite number of element and are classified as infinity Abelian group. It is 

clear that 𝑛 = 0 if and only if 𝑛𝑥 = 0.Therefore, 𝑄 and 𝑍 are called torsion free. 

Example 3.4 The torsion part of 𝑅/𝑍is 𝑄/𝑍. 

Solution: Suppose 𝑟 +  𝑍 is of finite order (r ∈ R). Then for some nonzero  

integer 𝑛, 𝑛(𝑟 +  𝑍)  =  𝑍. But 𝑛(𝑟 +  𝑍)  =  𝑛𝑟 +  𝑍, and so 𝑛𝑟 ∈  𝑍. This means that 𝑟 is a rational number. 

Thus 𝑇(𝑅/𝑍)  ⊆  𝑄/𝑍, where 𝑄 is the subgroup of rational numbers.  On the other hand, if 𝑎 +  𝑍 ∈  𝑄/𝑍, 

then 𝑎 =  𝑚/𝑛 where 𝑚, 𝑛 ∈  𝑍  and n≠  𝑂 . So  𝑛 (𝑎 + 𝑍)  =  𝑛(𝑚/𝑛 + 𝑍)  =  𝑛(𝑚/𝑛)  +  𝑍 =  𝑚 +  𝑍 =

 𝑍 Hence 𝑎 +  𝑍 is of finite order and 𝑄/𝑍 ⊆ 𝑇(𝑅/𝑍). Thus we have proved that 𝑄/𝑍 =  𝑇(𝑅/𝑍). 

Definition3.3 An abelian group is called mixed when it contains elements of both finite and infinite order. 

Example 3.5 𝑍3⊕𝑍 is a mixed group. This is clear since 𝑍3 is a torsion group and 𝑍 is torsion-free 

. We have 𝑂 (1, 0) = 3 and 𝑂 (0, 1) = ∞. 

Example 3.6 Given 𝐺=𝑍𝑝3 × 𝑍𝑝6 × 𝑍𝑝9 × 𝑍𝑝12 ×.   .   .   . is a mixed group. 

In this group we can see that 𝑂(1,0,0,0,...) = 𝑝 and 𝑂(1,1,1,...) = ∞. 

Theorem3.2 𝑇 (𝐺) is a subgroup of 𝐺 an abelian group (termed the torsion subgroup of 𝐺).  

Proof; clearly,𝑇(𝐺) ≠ ∅  as 𝑒 ∈ 𝑇(𝐺) 

Let 𝑎, 𝑏 ∈ 𝐺 be of order m, n∈N such that 𝑎𝑚 = 0 and 𝑏𝑛 = 0respectively. Thus, 𝑚𝑛( 𝑎 − 𝑏) = 𝑚𝑛𝑎 − 𝑚𝑛𝑏 = 

0 - 0 = 0  

Thus if 𝑎, 𝑏 ∈ 𝑇 (𝐺),  𝑎 − 𝑏 ∈  𝑇(𝐺) and 𝑇 (𝐺) is a subgroup of 𝐺.        □ 

Theorem3.3 For an abelian group, 𝐺, the quotient group 𝐺/𝑇 (𝐺) is torsion-free. 
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Proof: Now consider 𝐺/𝑇 (𝐺). Assume 𝑔 + T (G) is of finite order n, i.e. 

n (𝑔 + 𝑇 (𝐺)) = n𝑔+ 𝑇 (G) = 𝑇 (𝐺). It follows that n𝑔 ∈ 𝑇(𝐺). As 𝑇(𝐺) consists of all the elements of 𝐺 of 

finite order, there exists m such that m (n𝑔) = 𝑂.  

Then 𝑔 is of finite order and 𝑔 ∈ 𝑇 (𝐺); hence 𝑔 + 𝑇(𝐺)  =  𝑇(𝐺). Therefore, the only element of finite order in 

𝐺/𝑇(𝐺) is the zero 𝑇(𝐺). Thus 𝐺/𝑇(𝐺) is torsion-free. □ 

Example 3.7 𝑅/𝑄 is torsion-free since  𝑛𝑥 ∈ 𝑄 if and only if 𝑥 ∈  𝑄. 

Let x 𝜖 𝑅, then 𝑥 + 𝑄 ∈  𝑅/𝑄.Since the only finite element is the identity E, then 

𝑛(𝑥 + 𝑄) = 𝑛𝑥 + 𝑄=𝐸 + 𝑄 = 𝑄 and happens only when 𝑥 ∈ 𝑄. 

Theorem 3.4The class of torsion-free abelian groups is closed under subgroups and direct products.  

Proof: Let 𝐹 be a torsion-free abelian group, 𝐻 a subgroup of F and 𝑒 ≠ ℎ ∈  𝐻. Suppose the order of h is finite 

in 𝐻 . Then it must divide the order of h in F implying h is a nontrivial torsion element of 𝐹  giving a 

contradiction. Thus the order of h must be infinite in 𝐻, meaning 𝐻 must also be torsion-free.  

Let 𝐹1 ,𝐹2 ,𝐹3 ,... be torsion-free abelian groups and define F to be the direct product of all 𝐹𝑖 . Let e≠ 𝑥  = 

(𝑥1,𝑥2,𝑥3,...)∈  𝐹 with 𝑂(𝑥𝑖) = ∞ in 𝐹𝑖. Suppose 𝑂(x) = n in 𝐹. Then there exists nontrivial𝑥𝑗∈𝐹𝑗such that  

𝑂(𝑥𝑗)divides n in 𝐹𝑗 and hence is finite which contradicts 𝐹𝑗  being torsion-free. Therefore, 𝑂(x) = ∞ in 𝐹 , 

meaning 𝐹 must also be torsion-free.               □ 

Remark: As it has been shown that 𝑇(𝑅/𝑍)  =  𝑄/𝑍. Thus by Theorem 3.3, 𝑅/𝑄 ≅  (𝑅/𝑍)/ (𝑄/𝑍) is torsion-

free. 

Definition 3.4 A torsion group is a group in which every element is of finite order. 

Example 3.8 All finite groups are torsion groups. If 𝐺 is a finite group and 𝑥∈𝐺, then  

𝑂 (𝑥) divides 𝑂 (𝐺) < ∞. Thus 𝐺 is a torsion group. 

Example 3.2 G =∏ 𝑍𝑝 = 𝑍𝑝 × 𝑍𝑝 ×.  .  .∞
𝑘=1  

is a torsion group. Let 𝑥∈𝐺. Then 𝑝𝑥 = 𝑒, hence 𝑂 (𝑥)≤ 𝑝. So, 𝐺 is a torsion group expressed as an infinite 

direct product. 

Theorem 3.5 Show that the class of torsion abelian groups is closed under direct sums, quotients and subgroups. 

Proof. Let H be an abelian group. Assume  ℎ ∈ 𝑇( ⊕
𝛼∈𝑗

𝐻𝛼) .Then there exists a finite 𝑛 Suchthat 𝑛ℎ =
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⊕ 𝐸𝛼.Therefore ℎ ∈⊕ 𝑇(𝐻𝛼). 

Assume ℎ ∈⊕ 𝑇(𝐻𝛼),  with o ( ℎ𝑖) = 𝑛𝑖  in 𝐻𝑖 . Then ∏
𝑎𝑙𝑙 𝑖

𝑛𝑖  is finite, which means  ℎ has finite order in ⊕

𝐻𝛼.Thus, torsion groups are closed under direct sums.    

Let 𝑎 ∈ 𝑇, 𝑜(𝑎) = 𝑛  in  𝑇 and (𝑎 + 𝑁) ∈ 𝑇/𝑁.Then  

𝑛(𝑎 + 𝑁) = 𝑛𝑎 + 𝑛𝑁 = 𝑒 + 𝑁 = 𝑁,hence the order of 𝑎 + 𝑁 is a divisor of 𝑛 in 𝑇/𝑁. Thus, torsion groups are 

closed under quotients. 

Let 𝑇 be a torsion abelian group,𝐻 a subgroup of 𝑇and ℎ ∈ 𝐻.Then the order of ℎ in 𝐻 divides the order of ℎ in 

𝑇,which is finite. Thus, the order of ℎ in 𝐻 is finite, so 𝐻 must also be torsion, proving closure of subgroups.                 

□ 

However, the torsion class is not closed under direct products, which will be demonstrated in this example. 

Example 3.9Let 𝐺=𝑍2 × 𝑍3 × 𝑍5 × 𝑍7 ×.  .  .   .be a set of all primes. Then the order of set 𝐺  which is the 

smallest positive integer will be infinite, since no finite 𝑛 ≠ 0 exists such that 𝑛(1,1,1, .  .  . ) = 𝑒 

Definition 3.5 An Abelian group 𝐺 is torsion-free if all its elements, except for the identity, have infinite order. 

The torsion part of 𝐺 is the set of all elements in 𝐺 of finite order, denoted by 𝑇 (𝐺). 

Example 3.10 Both 𝑄 and 𝑍 have an infinite number of element and are classified as infinity Abelian group. It 

is clear that 𝑛 = 0 if and only if 𝑛𝑥 = 0.Therefore, 𝑄 and 𝑍 are called torsion free. 

Example 3.11 The torsion part of 𝑅/𝑍 is𝑄/𝑍. 

Solution: Suppose 𝑟 +  𝑍  is of finite order (r ∈  R). Then for some nonzero integer  𝑛, 𝑛(𝑟 +  𝑍)  =  𝑍 . 

But 𝑛(𝑟 +  𝑍)  =  𝑛𝑟 +  𝑍, and so 𝑛𝑟 ∈  𝑍. This means that 𝑟 is a rational number. Thus 𝑇(𝑅/𝑍)  ⊆  𝑄/𝑍, 

where 𝑄  is the subgroup of rational numbers. On the other hand, if 𝑎 +  𝑍 ∈  𝑄/𝑍 , then 𝑎 =  𝑚/𝑛 where 

𝑚, 𝑛 ∈  𝑍  and n≠  𝑂 . So 𝑛 (𝑎 + 𝑍)  =  𝑛(𝑚/𝑛 + 𝑍)  =  𝑛(𝑚/𝑛)  +  𝑍 =  𝑚 +  𝑍 =  𝑍  Hence 𝑎 +  𝑍  is of 

finite order and 𝑄/𝑍 ⊆ 𝑇(𝑅/𝑍). Thus, we have proved that 𝑄/𝑍 =  𝑇(𝑅/𝑍). 

Definition3.6 An abelian group is called mixed when it contains elements of both finite and infinite order. 

Example 3.12 𝑍3⊕𝑍 is a mixed group. This is clear since 𝑍3 is a torsion group and 𝑍 is torsion-free.  

We have 𝑂(1, 0) = 3 and 𝑂(0, 1) = ∞. 

Example 3.6 Given 𝐺=𝑍𝑝3 × 𝑍𝑝6 × 𝑍𝑝9 × 𝑍𝑝12 ×.   .   .   . is a mixed group. 

In this group we can see that 𝑂(1,0,0,0,...) = 𝑝 and 𝑂(1,1,1,...) = ∞. 
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Theorem 3.6 𝑇 (𝐺) is a subgroup of 𝐺 an abelian group (termed the torsion subgroup of 𝐺).  

Proof; clearly,𝑇(𝐺) ≠ ∅  as 𝑒 ∈ 𝑇(𝐺) 

Let 𝑎, 𝑏 ∈ 𝐺 be of order m, n ∈ N such that 𝑎𝑚 = 0 and 𝑏𝑛 = 0respectively. Thus, 𝑚𝑛( 𝑎 − 𝑏) = 𝑚𝑛𝑎 − 𝑚𝑛𝑏 

= 0 - 0 = 0   

Thus if 𝑎, 𝑏 ∈ 𝑇 (𝐺),  𝑎 − 𝑏 ∈  𝑇(𝐺) and 𝑇 (𝐺) is a subgroup of 𝐺.        □ 

Theorem3.3 For an abelian group, 𝐺 the quotient group 𝐺/𝑇 (𝐺) is torsion-free. 

Proof: Now consider 𝐺/𝑇 (𝐺). Assume 𝑔 + T (G) is of finite order n, i.e. 

n (𝑔 + 𝑇 (𝐺)) = n𝑔+ 𝑇 (G) = 𝑇 (𝐺). It follows that n𝑔 ∈ 𝑇(𝐺). As 𝑇(𝐺) consists of all the elements of 𝐺 of 

finite order, there exists m such that m (n𝑔) = 𝑂.  

Then 𝑔 is of finite order and 𝑔 ∈ 𝑇 (𝐺); hence 𝑔 + 𝑇(𝐺)  =  𝑇(𝐺). Therefore, the only element of finite order in 

𝐺/𝑇(𝐺) is the zero 𝑇(𝐺). Thus 𝐺/𝑇(𝐺) is torsion-free. □ 

Example 3.13 𝑅/𝑄 is torsion-free since  𝑛𝑥 ∈ 𝑄 if and only if 𝑥 ∈  𝑄. 

Let x 𝜖 𝑅, then 𝑥 + 𝑄 ∈  𝑅/𝑄.Since the only finite element is the identity E, then 

𝑛(𝑥 + 𝑄) = 𝑛𝑥 + 𝑄=𝐸 + 𝑄 = 𝑄 and happens only when 𝑥 ∈ 𝑄. 

Remark: As it has been shown that𝑇(𝑅/𝑍)  =  𝑄/𝑍.Thus by Theorem 3.3, 𝑅/𝑄 ≅  (𝑅/𝑍)/ (𝑄/𝑍) is torsion-

free. 

This section investigates finitely generated abelian groups with definitions and examples. 

Definition 3.6 An abelian group 𝐺 is finitelygenerated if there exist finitely many elements,𝑥1,𝑥2...𝑥𝑠∈𝐺 such 

that every 𝑥 ∈𝐺  can be written in the form𝑥 = 𝑛1𝑥1 +···+𝑛𝑠𝑥𝑠 , for some 𝑛𝑖 ∈𝑍 . In this case, we write 𝐺 

=<𝑥1,𝑥2....𝑥𝑠>. 

In this case, we say that the set {𝑥1. . . . . 𝑥𝑠} is a generating set of 𝐺 or that        𝑥1 .  .  .  . 𝑥𝑠 generate 𝐺. 

A basis of 𝐺 is a linearly independent subset of 𝐺 which also generates 𝐺. If 𝐺 is finitely generated, then the 

minimal s for which 𝐺 =<𝑥1,𝑥2...𝑥𝑠> is called the rank of 𝐺. Note that rank(𝐺)  =  1 if and only if 𝐺 is cyclic. 

Example 3.13 𝑍 and 𝑍𝑛 are finitely generated. Since each is cyclic,𝑍 =< 1 > and 𝑍𝑛=< 1 >.show that 𝑍 =< 1 > 

since by definition< 1 >= {𝑛. 1 /𝑛 ∈ 𝑍} (The cyclic group generated by 1) 

Example 3.14 𝑄 is not finitely generated.  
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Assume 𝑄 is finitely generated. Then 𝑄 is cyclic and has a generator 
𝑝

𝑞
 where𝑝, 𝑞 ∈ 𝑍. Show that 

𝑝

𝑞+1
∉ 〈

𝑝

𝑞
〉. If 

𝑝

𝑞
𝜖 〈

𝑝

𝑞
〉 then there exist𝑧 ∈ 𝑍 such that 

𝑝

𝑞
=

𝑝

𝑞+1
 . Then, 𝑧 =

𝑝

𝑞
.

𝑝

𝑞+1
 =

𝑞

𝑞+1
. The latter is irreducible and 

implies that𝑧∉ Z. Thus, arrive at a contradiction 

Then show that divisibility is closed under subgroups, quotients, sums and products. To show that a divisible 

abelian group is the direct sum of its torsion subgroup and its torsion-free quotient and further analyze each 

summand. 

Definition 3.7 A group 𝐺 is said to be divisible if for each integer 𝑛 ≠  0 and each element 𝑔 𝜖 𝐺 there exists 

ℎ ∈  𝐺 such that 𝑛ℎ = 𝑔. 

Alternatively, 𝐺 is divisible if 𝐺 = 𝑛𝐺 for every integer 𝑛.Note that a cyclic group is not divisible. Nor for that 

matter is a direct sum of cyclic group. 

Example 3.15 The addition group of rational numbers, denoted by 𝑄, is divisible.    Given any rational  𝑎 and 

any integer 𝑛 > 0, there exists 𝑎′=
𝑎

𝑛
∈ Q such that 𝑎=𝑎′𝑛.Also the following groups are divisible: the additive 

group of real numbers, the additive group of complex and the multiplicative group of real numbers. 

Example 3.16 𝑍 is not divisible. Take 𝑔 =  1 and 𝑛 =  5 to see if 5ℎ =  1, then ℎ =  1/5 ∉ 𝑍. This example 

demonstrates that divisibility is not closed under subgroups since 𝑍 is a subgroup of 𝑄. 

Definition 3.8 A trivial abelian group 𝐴 is called divisible if for each element  𝑎 ∈   𝐴 and each nonzero integer 

𝐾, there is an element 𝑥 ∈ 𝐴 such that 𝑥𝑘=𝑎. (Here the group operation of 𝐴 is written multiplicatively. In 

addition notation, the equation is written as 𝑘𝑥=𝑎)that is, 𝐴 is divisible if each element has a 𝑘-th root in 𝐴. 

Example 3.17 Nontrivial finite abelian groups are not divisible. Let 𝐺𝑛 be a finite abelian group of order𝑛and 

𝑒 ≠  𝑔 ∈ 𝐺𝑛. Then for everyℎ ∈ 𝐺𝑛, we have 𝑒 =  𝑛ℎ ≠  𝑔. 

 Example 3.18 The group 
𝑄

𝑍⁄  is a torsion and divisible.Let 𝑔 ∈ 𝑄 and 𝑛 ∈ 𝑁.  Just as before, define  ℎ =

 (1/𝑛)𝑔 ∈ 𝑄. The𝑛 ℎ + 𝑍 =  𝑛 ((1/𝑛)𝑔 + 𝑍)  =  𝑔 + 𝑍 =  𝑛ℎ +  𝑛𝑍 =  𝑛 (ℎ + 𝑍). 

Theorem 3.7 The class of divisible groups is closed under quotients  

Proof: Let 𝐺 be a divisible group, 𝑁 a subgroup of 𝐺and 𝑥 ∈  𝐺. Then for every 𝑛 ∈ 𝑍, there exists 𝑦 ∈  𝐺 

such that 𝑛𝑦 =  𝑥. Then 𝑛(𝑦 +  𝑁)  =  𝑛𝑦 +  𝑛𝑁 =  𝑥 +  𝑁. Thus the same𝑦 can be taken to show that 𝐺/𝑁 

is also divisible proving closure under quotients.   □ 

Theorem 3.8 The direct sum of abelian groups is divisible if and only if each summand is divisible. 

Proof: Let 𝐻𝛾, 𝛾 ∈  𝛤 be abelian groups and let 𝐻 = ⨁𝐻𝛾. Suppose Hγ is divisible for all γ ∈ Γ. Assume ℎ =
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 (ℎ𝛾)  ∈  𝐻 and n is a positive integer. Then there exists 𝑡 =  𝑡𝛾 ∈  𝐻𝛾 such that 𝑛𝑡𝛾 =  ℎ𝛾, which shows that 

𝐺 is divisible. 

Conversely, suppose 𝐻 is divisible, ℎ γ𝑜
∈𝐻 γ𝑜 and n is a positive integer. Let ℎ =  (ℎ𝛾)  ∈  𝐻 where ℎγ = e if 

γ≠  γ𝑜  and ℎ γ𝑜
=ℎ γ𝑜

. Since 𝐻 is divisible, there exists t = (tγ) ∈𝐻 such that 𝑛𝑡 =  ℎ. But then, n𝑡 γ𝑜
 =ℎ γ𝑜

, 

which shows 𝐻 γ𝑜 is divisible.       □ 

Definition 3.9 An Abelian group is called free-abelian if it is a direct sum of infinite cyclic groups. 

Definition 3.10 A subset {𝑒𝑖}𝑖∈𝐼 of an abelian group 𝐴 is called a basis for 𝐴 if ∀𝑥 ∈ 𝐴 there exists a unique 

representation 𝑥 = ∑ 𝑥𝑖𝑖∈𝐼 𝑒𝑖 with 𝑥𝑖 ∈  𝑍 and almost all 𝑥𝑖 = 0,an abelian group is called free if it has a basis. 

Example 3.19𝑍𝑚 = 𝑍 𝑚𝑍⁄  is not free because the representation is not unique, which means it cannot be 

expressed as a linear combination i.e. it has got no basis. 

Example 3.20 𝑍 ⨁ 𝑍 is a free abelian group with basis {𝑒1 = (1,0), 𝑒2 = (0,1)} 

The results are shown as an Application below: 

A general theory of infinite-dimensional Lie groups is hardly developed. Even Bourbaki only develops a theory 

of infinite-dimensional manifolds, but all of the important theorems about Lie groups are stated for finite-

dimensional ones. An infinite-dimensional Lie group 𝐺 is a group and has an infinite-dimensional manifold with 

smooth group operations 

           𝑚: 𝐺 × 𝐺 → 𝐺      , 𝑚 (𝑔, ℎ)  = 𝑔 · ℎ     𝐶∞,  

𝑖: 𝐺 → 𝐺,     𝑖 (𝑔)  = 𝑔𝑖 , 𝐶∞. 

Such a Lie group 𝐺 is locally diffeomorphic to an infinite-dimensional vector space. This can be a Banach space 

whose topology is given by a norm∥ · ∥, a Hilbert space whose topology is given by an inner product <·, ·>, or 

a Frechet space whose topology is given by a metric but not by a norm. Depending on the choice of the topology 

on 𝐺 , Banach, Hilbert, or Frechet Lie groups, respectively. The Lie algebra 𝑔  of a Lie group 𝐺  is defined 

as  𝑔 ={Left invariant vector fields on 𝐺 ≃ 𝑇𝑒𝐺 (tangentspaceattheidentity e).The isomorphism is given (as 

infinite dimensions)by 

𝜉 ∈ 𝑇𝑒𝐺→𝑋𝜉∈𝑔,       𝑋𝜉(𝑔) :𝑇𝑒𝐿𝑔(𝜉),  

And the Lie bracket on 𝑔 is induced by the Lie bracket of left invariant vector fields 

[𝜉, 𝜂]  =  [𝑋𝜉 , 𝑋𝜂](𝑒), 𝜉, 𝜂 ∈ 𝑇𝑒𝐺. 

The definition in infinite dimension is identical with the definition in finite dimensions. The big difference 
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although is that infinite-dimensional manifolds its Lie groups are not locally compact. Some classical examples 

of finite-dimensional Lie groups are the matrix groups 𝐺𝐿(𝑛), 𝑆𝐿(𝑛), 𝑂(𝑛), 𝑆𝑂(𝑛), 𝑈(𝑛), 𝑆𝑈(𝑛), 𝑎𝑛𝑑 𝑆𝑝(𝑛)with 

smooth group operations given by matrix multiplication and matrixinversion. The Lie algebra bracket is the 

commutator 

[𝐴, 𝐵]  = 𝐴𝐵 −  𝐵𝐴 with exponential map given by 

𝑒𝑥𝑝 (𝐴)  = ∑ (
1

𝑡!
) 𝐴𝑡 = 𝑒𝐴∞

𝑡=0 .However, only the 𝑈 (1) and 𝑆0 (2) are abelian groups and this will be shown 

below: 

A rotation in two dimensions is an example of an infinite abelian group. 

In two dimensions’ rotations are uniquely defined by the angle of rotation. They preserve the length of a vector 

and the angle between vectors. Two successive rotations is a rotation, the rotation by 𝜃 =  0 is the identity, and 

any rotation can be undone by rotating in the opposite direction. The set of all two-dimensional rotations forms a 

group, called 𝑼 (𝟏).The elements of the group are labelled by the angle of the rotational 𝜃 ∈  [0, 𝜋). There are 

infinite number of elements, denoted by a continuous parameter; groups where the elements are labelled by 

continuous parameters are called continuous groups. Then denote two–dimensional rotations by 𝑅(𝜃). Note that 

the parameter labeling the rotations varies in a compact interval (the interval [0,2𝜋) in this case). Groups with 

parameters varying over compact intervals are called compact groups. The action of rotations on real vectors in 

two dimensions known as 𝑺𝑶(𝟐)defines a representation of the group. Intuitively two successive rotations by 

Ѳ +  𝜓yield a rotation by Ѳ +  𝜓, and hence the group of two-dimensional rotations is abelians. It is interesting 

to consider a one dimensional complex representation of 𝑼 (𝟏).Given that the coordinates (x, y) of a point in a 

two-dimensional space, define the complex number  𝑍 = 𝑥 + 𝑖𝑦. The transformation properties of 𝑍 define a 

representation 𝑍 ⟼ 𝑍′ = 𝑒𝑖𝜃𝑍 

 Knowing that 𝑒𝑖Ѳ=cos𝜃+isin𝜃 

𝑥 + 𝑖𝑦 → 𝑥′ + 𝑦′= (𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) (𝑥 + 𝑖𝑦) 

                           = 𝑐𝑜𝑠𝜃𝑥–  𝑠𝑖𝑛𝜃𝑦 +  𝑖 (𝑐𝑜𝑠𝜃𝑦 + 𝑠𝑖𝑛𝜃𝑥) which is 

                    (
𝑥′

𝑦′)=(
𝑐𝑜𝑠Ѳ −𝑠𝑖𝑛Ѳ
𝑠𝑖𝑛Ѳ 𝑐𝑜𝑠Ѳ

) (
𝑥
𝑦) 

U (1)≅ 𝑺𝑶(𝟐) and it is an infinite abelian group. 

Application in algebraic Topology  

It is often the case that scientific observations yield a set of 𝑛-dimensional points used to represent a space. 

Examples include coordinates of locations on the globe identified by GPS (Global Positioning System), 

coordinates of atoms in a protein measured by X-ray Crystallography, or coordinates of bodies in space. In any 
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case, we would like to take that point set, and describe the shape of the space it represents. This type of analysis 

lends itself naturally to a homology theory called simplicial homology. Simplicial homology is a classical tool 

of topology, developed by Poincare (Analysis Situs, 1895) (8), which takes a simplicial complex and yields the 

homology groups of the underlying space. To understand exactly what this means, begin with the following 

definitions: 

Definition 1: A simplicial complex is called directed if each simplex of dimension greater than zero has an 

associated direction. For example, the direction of an edge can be defined by determining a starting and 

terminating endpoint. Each face, or 2-simplex, can have a clockwise or counterclockwise direction. Direction of 

higher dimensional simplices can be defined similarly by providing an order of vertices. Then, would like to be 

able to move through a simplicial complex, in order to study its structure, keeping track of simplices and 

direction as we move. To do this, define an algebraic structure called a chain. 

Definition 2: Let 𝐾be a directed 𝑚-complex.A 𝐾-chain 𝐶 is defined as 

∑ 𝑎𝑖𝛿𝑖

𝑚

𝑖=1

 

Where 𝑎𝑖 ∈ 𝛿𝑖 ∈ 𝐾.The set of all 𝐾-chains in a complex, called a chain complex, is denoted by 𝑐𝑘  for 𝑘 =

0,1,2.  .  .  for completeness, define  0𝛿 = ∅,the zero. 

Definition 3: Let 𝐾 be a directed complex and 𝛿 a 𝐾-simplex in 𝐾.The boundary of 𝛿,denoted by 𝜕(𝛿),is the 𝐾-

chain defined as the sum of the (𝐾 − 1) faces of 𝛿with the signs reflecting the orientation of the faces 

Remark 1 Therefore, the boundary operator maps a k-simplex to a chain of (k-1) - simplices 

Definition 4Let 𝐾 be a directed complex and 𝐶 be a 𝐾-chain in 𝐾 defined by 

𝐶 = 𝑎1 𝛿1 + 𝑎2𝛿2+.  .  . +𝑎𝑛𝛿𝑛, where  𝛿𝑖 are simplices, then the boundary operator 

𝜕: 𝐶𝑘 → 𝐶𝑘−1( for 𝐾 > 0) applied to 𝐶 is defined as 𝜕(𝐶) = 𝑎1 𝜕(𝛿1) + 𝑎2𝜕(𝛿2)+.  .  . +𝑎𝑛𝜕(𝛿𝑛) 

Definition 4 Let 𝐶be a 𝑘-cycle in the directed complex𝐾. If there exists a (𝑘 + 1) −chain 𝐷 such that 𝜕(𝐷)  =

 𝐶, then 𝐶 is called a 𝑘-boundary. The set of all 𝑘-boundaries is denoted𝐵𝑘 . Also describe 𝐵𝑘  as the image 

of:𝐶𝑘+1(𝐾) → 𝐶𝑘(𝐾). 

Since the group is an algebraic structure, talk about sub-groups, kernels, images, etc 

By definition 4 the kernel of 𝜕(𝐶) for 𝑐 ∈ 𝐶𝑘 is the set of chains 𝐶 such that 𝜕(𝑐) = 0.Then denote this set𝑍𝑘 ⊂

𝐶𝑘, and calls the elements of 𝑍𝑘𝐾-cycles. 

Remark 2: image𝐵𝑘 ⊆ 𝑍𝑘 ⊆ 𝐶𝑘.The k-th homology group is the quotient of the cycle group over the boundary 
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group: 

𝐻𝑘 =
𝑍𝑘

𝐵𝑘
⁄  

Homology groups are always abelian. Furthermore, for spaces that are considered finitely generated. 

Thus a topological space 𝑋 with basic sequence of groups called chains with 𝐶0 (0-dimensional chain),𝐶1(1-

dimensional chain),and 𝐶2(2-dimensional chains) Then between the chains, there are maps called the boundary 

maps displayed as follows:,𝜕2,𝜕1 and 𝜕0.Then the,2- dimensional chains shows little discs,1-dimensional chain  

shows edges  and 0-dimensional chain which is the vertices. Note: There are two ways to define the boundary 

operator 𝜕0 on 0-chains. The first approach is to make 𝜕0(𝐶0) = 0 for all 0-chains. With this definition, the 

dimension of the resulting homology group counts the number of path-connected components of a space. 

  

  

 

   

 

 

 

𝐶2  is zero considering the skeleton of the triangle, 𝐶1  is a linear combination of edges of a triangle 

i.e.{𝑎, 𝑏, 𝑐} whilst 𝐶0 is a linear combination of vertices{𝑥, 𝑦, 𝑧}.Then below is the operation of each boundary 

𝜕0,𝜕1, 𝜕2acting on each respective dimensional chain𝐶0 ,𝐶1𝑎𝑛𝑑 𝐶2.  

𝜕0   ∶               𝑥, 𝑦, 𝑧 → 0 

                                                                                𝜕1  :              𝑎 → 𝑦 − 𝑥 

                                                                                           𝑏 → 𝑧 − 𝑦 

                                                                                           𝑐 → 𝑥 − 𝑧 

                                                                                 ð2 :            0 → 0 

Let us look at the 0-dimensional chain. 

𝐶2 𝐶1 𝐶0 
O 

𝜕2 𝜕1 𝜕0 

0 Z⨁𝑍⨁𝑍 𝑍 ⊕ 𝑍 ⊕ 𝑍 

𝑎    𝑏   𝑐 
𝑥     𝑦       𝑧   0 

𝑙𝑎 + 𝑚𝑏 + 𝑛c 
𝛼𝑥 + 𝛽𝑦 + 𝛾𝑍 

2nd dim 1st dim 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2021) Volume 59, No  2, pp 279-303 

 

301 
 

𝑍0 =Kerð0 = 𝐶0 =< 𝑥, 𝑦, 𝑧 > 

𝐵0 =Im𝜕1 =< 𝑦 − 𝑥, 𝑧 − 𝑦, 𝑥 − 𝑧 > 

Homology of 0-dimensional chain is 𝐻0 =
𝑍0

𝐵0
⁄ =

< 𝑥, 𝑦, 𝑧 >
< 𝑦 − 𝑥, 𝑧 − 𝑦, 𝑥 − 𝑧 >⁄  

  Quotient by 𝐵0 =setting elements of 𝐵0 to 0 

            𝑦 − 𝑥 = 0 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑦 = 𝑥 

           𝑧 − 𝑦 =0 𝑚𝑒𝑎𝑛𝑠 𝑧 = 𝑦 

Which implies that 𝑥 = 𝑦 = 𝑧. 

𝐻0 ≃ 𝑍 This is a copy of infinite cyclic group, which is the simplest infinite abelian group and be our element of 

the form  𝑛𝑥 + 𝐵0    or 𝐻0 ≅ 𝑍⨁𝑍⨁𝑍
𝑍⨁𝑍⁄ ≅ Z.Then also look at the 1-dimensional chain. 

𝐻1 ≡
𝑍1

𝐵1
⁄  

𝑍1 =Ker ð1 

𝜕 (𝑙𝑎 + 𝑚𝑏 + 𝑛𝑐)=𝑙(𝑦 − 𝑥) + 𝑚(𝑧 − 𝑦) + 𝑛(𝑥 − 𝑧) 

                                =(𝑛 − 𝑙)𝑥 + (𝑙 − 𝑚)𝑦 + (𝑚 − 𝑛)𝑧 = 0 ⟹ 𝑙 = 𝑚 = 𝑛 

  So   Ker 𝜕1 =<𝑎 + 𝑏 + 𝑐 >= 𝑍1 ≃ 𝑍 (groups of cycles) 

Since 𝐶2  is 0 meaning that  𝜕2 ∶ 0 ⟶ 0 

                                                                                           𝐵1 =imð2=0 

𝐻1 ≡
𝑍1

𝐵1
⁄  

≡
𝑍1

0⁄  

                                                                                               ≡ 𝑍1 ≃ Z 

The Homology of 0-dimensional chain is 𝐻0(𝑆1) = Z 

The homology of 1-dimensional chain is 𝐻1(𝑆1) = 𝑍 

Finally, the homology of n-dimensional chain will be  𝐻𝑛(𝑆1) = 0    𝑛 ≥ 2 
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𝐻𝑛(X) measures the number of connected components. 

Thus 𝑍  is a simplest infinite abelian group which is homeomorphic to a circle as shown above in the 

computational of the homology of a skeleton triangle with 0-dimensional and 1-dimensional chain 

4. Results and Discussion 

The Theory of abelian groups is generally simpler than that of their non-abelian counterparts and finite abelian 

groups are very well understood. Classifying groups by stating whether elements are finite or infinite and 

categories them as infinite abelian Groups of Torsion, Torsion Free and mixed group. Every torsion group splits 

into a direct sum of primary groups and this decomposition is unique. A free abelian group is a direct sum of 

infinite cyclic groups. Direct sums of infinite cyclic groups are all the free abelian groups. An important fact is 

that every Abelian group is a homomorphic image of a free abelian group. The torsion group 𝑇(𝐺) of a group 

𝐺 was defined and it was shown that 𝐺/𝑇(𝐺) is torsion-free. Every subgroup of a free abelian group is free 

abelian. All divisible abelian groups turn out to be direct sums of groups isomorphic to 𝑄 and the groups, and 

the cardinalities of the sets of components isomorphic to 𝑄, as well as to 𝑍𝑝∞ (for each), from a complete and 

independent system of invariants of the divisible group. For example, every theorem that is stated in this paper 

may be generalized for application in Groups and Ring Theorem and also in algebraic Topology. In conclusion 

two important special classes of infinite abelian groups with diametrically opposite properties are torsion groups 

and torsion-free groups, exemplified by the groups 
ℚ

ℤ⁄  (periodic) and ℤ (torsion free).in addition, many large 

abelian groups possess a natural topology, which turns them into topological groups. Several classes of torsion-

free abelian groups have been studied extensively e.g. Free abelian groups. Amongst torsion-free abelian groups 

of finite rank, only the finitely generated case and the rank 1 are well understood. lastly Finite abelian groups 

remain a topic of research in computational group theory. 

5. Recommendation 

the theory of infinite abelian groups is an area of current research and basically the structure theorem for infinite 

abelian groups depends on group analysis of the set of integers (𝑍),integers modulo (𝑍𝑛) and also an additive of 

rationale (𝑄).However, more discovery is still on for describing  the structure theorem of an infinite abelian 

group. 
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