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Abstract

V. Karakaya and T.A. Chiristi extended the definition of statistical convergence to weighted statistical
convergence in [37], using the sequence of real numbers sy, satisfying some conditions. The modification of
this topic was fulfilled in some papers such as [21,30]. It is well known that if s, = 1, for all k, the weighted
statistical convergence reduces to statistical convergence. Karakaya and Karasia [38] defined weighted af-
statistical convergence of order y, which does not have this property. In this extension for the case s, = 1, for
all k, weighted af -statistical convergence of order y does not reduce to af3-statistical convergence. Later
Aktuglu and Halil introduced a modification in [12] to remove this extension problem. In this paper we
introduce weighted af-equistatistical convergence of order (y,n) for double sequences, by using two real
sequences py and q;, considering the modified extension with improved method, also we use this definition to
prove Korovkin type approximation theorem via weighted «f-equistatistical convergence of order (y,n) and
weighted af3-statistical uniform convergence of order (y,n) for bivariate functions on [0, ) X [0, o). Some
examples of positive linear operators are constructed to show that, our approximation results work, but its
uniform case does not work. Furthermore rate of weighted af-equistatistical convergence of order (y,n) are
studied.

Keywords: Double sequences; Statistical convergence; Equistatistical convergence; Rate of convergence;
Korovkin type approximation; weighted statistical convergence; Positive Linear Operator.
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1. Introduction

1. Take D < N, then the real number 0 < §(D) < 1, which is defined by,

S(D) = lim, ., |{ae[1n:l]:aeu}|’

in the condition of existence of the limit, is called the density of the subset D. The || indicates the cardinality of
set I. In [13], Fast used the natural density to define a new type of convergency which is called, statistical
convergence and it is a non-trivial extension of ordinary convergence. For any sequence y, and & > 0 if
6(ae1,n]: |x,—L| =¢€}) =0, then y, is called statistically convergent to L and it is shown by st —
limy, = L. Pringsheim [1], introduced the limit of real valued double sequences. A real valued double

sequence X, , is called convergent to “’a’” in Pringsheim's sence (P-sence) and shown as P — lim,, ,, X, , = @,

if for every € > 0 there exist N, € N such that,
|xm‘n - a| <& vVnm=N,.
Let | be a subset of N x N, so the density of | is defined as;

8(K) = P — lim, “o,

where In,m) = [{(J,k),1<j<nl1<k<m|x,,—a|=¢&}|

Weighted statistical convergence was studied in [21,30,37]. A definition of weighted a-statistical convergence
of order y is considered in [38]. Later modified form of weighted af-statistical convergence was introduced by
Aktuglu and Gezer in [12]. In this paper we use the modification to introduce weighted af-equistatistical
convergence of order (y,n) for double sequences of functions, which is an extension of af-equistatistical
convergence of order y. Later Korovkin type approximation theorems are proved via weighted af -
equistatistical convergence and af-statistical uniform convergence of order (y,n) for double sequences of
functions of two variables on E = [0, o) X [0, o). Approximation results are illustrated on some examples of
positive linear operators. The last chapter is devoted to the rate of weighted af-equistatistical convergence of
order (y,m). Let A be the set of all pairs such that e and B are non-decreasing sequences of positive humbers
with B(n) > a(n) for all n, and B(n) —a(n) > o as n - oo. For all (a,B) €A and 8% (,y) is
introduced as follows (see [12]),

8%F(1,y) = lim [{ke[a(n) p(m)]:kel}|

nooo (BM-am)+1)Y ' (11)

where 0 <y < 1. It is obvious that if a(n) = 1and B(n) = n then af-statistical convergence of order y

reduces to statistical convergence of order y. Some properties of §%F, which will be used in the rest of the

paper, are given in the following lemma (see [2]).

Lemma (1.1) ([12]) IfI,J € Nand 0 < y < 1, then for all (a, B) € A, the following properties are true,
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1) IfI = @, then §%F(1,y)=0.

2) If I=N,then §*F(I,y)=1.

3) If |I| < oo, then 8% (I, y)=0

4)  Obviously for any subsets I c J, consequences 8%F(I,y) < 6%F(J,y).
5 6% ujy) <8y +8“F(J,y).

6) If 0 <y <n<1,then8*F(I,m) < 6% (I, ).

The following is the given definition of af-statistical convergence of order 0 < y < 1in[11].

Definition (1.2) ([11]) If the sequence x = {x;}, k € N, is called af-statistically convergent to L of order y and

denoted by st{lﬂ — lim,,_,.x, = L for any positive &, if the following holds,

. |{ke[a(n),B(m)]:|xx—L|ze}|
%P ({k € [a(n), B)]: Iy — L] = £}, y) = Lim === 2 == = 0,

It is obvious that, taking y = 1, in above equation, it gives the definition of the af-statistical convergence.
2. Weighted af-statistical convergence for double sequences of order (y,n)
Let p,, and q,, be any sequences and let,

P k= © as m-— o, (2.1)

n = X
ke[a(n),p(n)]
and

Qm = Y g ®asm- o, (2.2)
jelaqm),pm)]

where n,m € N. Then for any pair (a, B) € A define:

a(n) [“g)] a(m) [“(z’:")]
n T lam) &1 Pk m T [g(m)] =) qj.
and
_ 5w [ﬁg)] e [B(m)]q.
T T T N TTCO =

where [r] is the integer part of r.

Definition (2.1) Let x = (x,,,,) be any double sequences, so it is called to be weighted af -statistically

convergent of order (y,n) to L if Ve > 0,
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P—lim,,, HUe))E[Cm Din] X [An Bn]Pkdjl ¥k, —LIZE} _ 0.
’ (Bp=An+1)1(Crn—Dm+1)Y

Taking px=q; =1 forall k j=1.2,..,4,=a(), B,=BMm), C, =a(m)and D, = B(m), in the

above equation we have,

(k. )) € [a(m), Bm)] X [a(n), B@)): |xi; — LI 2 &} _

P i =) — B(n) + D (a(m) — B(m) + 17 :

which is the definition of af-statistical convergence of order (y,n) for double sequences. In this section we
consider some examples of af -statistical convergence, af -equistatistical convergence and ap -statistical

uniform convergence and we show their differences.

Definition (2.2) A double sequences of bivariate functions {f,,,} on X? € R x R is said to be ap-statistically

pointwise convergent of order (y,m) tof, if ve > 0 and for each (x,y) € X2,

{0k ) Efoe(m), B(m) ] x [ax(m), B()]: f § xy) - f (xy) 28}
(a(m)—B(n)+1)" (a(m)—-B(m)+1)Y

P —1lim,,, 0.

Then this is shown as styg — f,m — f.
Definition (2.3) A double sequences of bivariate functions {f, .} on X2 Rx R is said to be af-

equistatistically convergent of order (y,n) tof, if Ve > 0 and for each (x, y) in X2 the double sequences of
real valued functions of two variables,

_ Hkepelam)pm)]x[a(m).B(M)]:|fL(xy)—f(xy) |2}l

Pmanzyn(%Y): = (@B +1)7 (aGm)~B(m)+ )Y ’

Converges uniformly to zero function on X2 i.e. P — lim,,, |l Pmneyn(,-) lgxzy=0. By the definition we

have the following implication st} — fmn = f, where || f ll¢x2y= sup . pex21f (X, ¥)|.

Definition (2.4) A double sequences of bivariate functions {f,,»} on X* € R x R is said to be af-statistically

uniform convergent of order (y,n) to fif Ve > 0 and for each (x, y) in X2,

’{(k,i)E[a(m),ﬁ(m)]X[a(n).ﬁ(n)]:Ilfk,j—f IIC(XZ)EE}
(a(m)-Bm)+ 1)1 (a(m)-B(m)+1)¥

=0.

P —lim,,
Then it is shown by sty — finn = f-
Remark (2.5) 1) If y = n = 1, then weighted af-staistical pointwise convergence, weighted af3-equistaistical

convergence and weighted ap -staistical uniformly convergence of order (y,n) are called af -statistical

pointwise convergence, af-equistatistical convergence and af- statistical uniformly convergence respectively.
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2) Clearly for 0 <1,y < 1,8t0% — fmn 3 f = Stig— fimn > f = Stig— fmn ~ f-
The following examples show that the inverse of 2) does not hold.

Example (2.6) Let fy,n:[0,00) X [0,00) — {0, 1} be the sequence of functions of two variables defined as,

fm,n(x: }’) = Xm(x)Xn(y)

where y,,(x) is characteristic function of x and let f(x, y)=0. Then st — fmn = f forall (a, B) € A and for

0 < y,n < 1. Moreover for a given £ > 0 we have,

[{(k, ) € [a(m), B(m)] X [a(m), B(W)]: |fi,;(x,¥) = fF(x, )| = €}
(a(n) — () + D7(a(m) — f(m) + 1)¥
1
= (@ — B + D7 (a(m) - B@m) + 1Y

Pmmneyn (X, y): =

-0,

as m,n — oo, This means that, it is af-equistatistical convergent to f, but

sup |fua( )| =1,
(6 )€l0,60)x[0,c0)

is not aS-statistically uniform convergent to f.

yn

(1+x)m @a+y)n’ where

Example (2.7) Lets define the sequence of functions of two variables f,, ,(x,y) =

fmn: [0,00) X [0,0) — [0,1).

It is clear that f,, ,(x,y) is pointwise convergent to f(x,y) = 0 in the P-sence, and shown as f,,, = f(af —
st.), where (a, B) € A. If we choose £=1/4, then for all k € [a(m), B(m)], j € [a(n), B (n)] and

1 1
(x,y) € (Wﬁ-foo) X (Wﬁ_{m)’

we have

fk,j(x' y) = (_) (_)] = (ﬁ(m)\/_) (5(11)\/_)} = (‘B(m)\/_)ﬁ(m)(ﬁ(n)\/_)ﬁ( l

1+x 1+y
which shows that st"ﬁ fmn —~ f doesnothold for 0 <y,n < 1.

Example (2.8) Consider the following double sequence of functions of two variables
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Gr,j: D = [0,00) X [0,0) - {0,1},
such that forany n,m € N :

_(0 (ke[ 2P -1 x [0, 220 ~ 1]
Iy (6 ¥) = {1 otherwise .

Forall (x,y) € D and let a(n) = 22""1, B(n) = 22" — 1, a(m) = 22™~1 and f(m) = 22™ — 1, then

[{(,)E[22™ 1 22M—1]x [22"71 22— 1]:l gy i—glicpy2e}l

P — lim?’l,m (ZZm—l)(ZZn—l)

Or

where g(x, y)=0 for all (x,y) € D. Then for m,n — oo, stop — gmn 3 g, but since
d{1<sk=snl<sjsmllgg;—glcp=e})

does not exist, gy ; is not uniformly convergent to g in statistical and ordinary sense. In the following, we are

going to define weighted af -statistical pointwise convergence of order (y,7n), weighted af -equistatistical

convergence of order (y,n) and weighted af-statistical uniform convergence of order (y, 7).

Definition (2.9) A double sequences of bivariate functions {f;,,} on X? € R x R is said to be weighted a-

statistical pointwise convergent of order (y,n) to f if for each positive £ and for each (x,y) € X?

[{(K,)E[Com, D | X[An,Br:D1c j| f 1, j(X¥) - F ()28}
(Bn—An+1)1(Dm—Cm+1)Y -

P — lim,, 0.

Then it is shown by w — st/ — frn = f -

Definition (2.10) A double sequences of bivariate functions {f;,,} on X € R X R is said to be weighted a3-
equistatistical convergent of order (y,n) to f for each positive € and each (x,y) € X? the sequence of real

valued functions

0y) = [{(k,)) € [Cm, Din] X [An, Bnl: Pid;lfie,j (6, ¥) — f(x, )] = €}
Pman.eyn ) = (Bn — An + 1)1 (Dyy — Cop + 1YY '

be such that the P — limy, n | Pmneyn(o-) llgezy= 0. 1t means that py, e, (x, ¥) converges uniformly to

zero, where Il f llgex2y= Subyyyex|f (x, ¥)|. Then itis shown by w — stz % — frun = f.

Definition (2.11) A double sequences of bivariate functions {f;,,}onX? € R x R is said to be weighted a-

statistical uniform convergent of order (y,n) to f for each positive ¢,
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|Gk )YELCom Do XA BT Dict 1 1~ Pl 2,2
(Bn—=An+ 1)1 (D —Cm+1)Y -

P —limpy, 0.

Then itis shownby w —styg — frnn 3 f .

Example (2.12) Lets consider the sequence of continuous functions

hm,n(x' y)
2.7,2 2 2 1 1 1 1 7 2m-1 2m 2n—-1 »2n
_Jien’m?(n + 1)*(m + 1) (x——)(y——)(x— 1><y— 1) (k,j) € [2°m7H 25 — 1] x [2°77, 25" — 1]
n 0 m n+ m+ otherwise,
where

1 1 1 1
) € (Gl x Gaal
and let h(x, ¥)=0, px =k, q; = j and (@, B) € A, such that a(n) = a(m) =1 and g(n), f(m) € N for all n,
m. Thus 4,, = C,, =1 and B, = B(n)(B(n) + 1)/2, D, = B(m)(B(m) + 1)/2. For arbitrary ¢ > 0 and for
any 0 < y,n < 1 the following is held,

_ {k.DEMDmMIX[1,Bn]:prajl i, j(x.0)~h(x,y)|2e}| 1

Proryeiyn(,Y) = O (B = G

as m,n — oo uniformly in (x, y) which gives that w — st} s — hyn > h, butw —stl; — hy, = h does not

hold since for any n,m € N,

sup |hm,n(x, y)| =1.
(x,¥)€[0,00)x[0,00)

Example (2.13) Let the bivariate functions f,, ,: D = [0, 00) X [0, ) — [0,1] be such that,

= ym 2y,

fm,n(XJY)=(1+x 1+y

and let p, =2k and q; =2j,so for (a,p) € A if we take a(n) = a(m) =1and B(n),B(m) € N, then
for all n, m we have 4, =C,, =1, B, = f(n)(B(n) + 1) and D,,, = f(m)(B(m) + 1). On the other hand
since f(x, y)=0 is the pointwise limit of the sequence f,, , (x, y) in the ordinary sense, it is clear that w — f,,, ,, —
f(aB — stat). Choosing e=1/4 and for all k € [1, D,,],

1 1
V) E(zm——1,0) X (75— — 1,0
(xy) (ﬁ(m)\/z ) (,3(112/E )

we have,
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1+x 1+y

_ X y 1 k 1 i 1 1 1
Jn (0 y) = (MED™ = (B(m)\ﬁ) (B(n)\/i)} = (B(m)\ﬁ)ﬁ(m)(ﬁ(nzﬁ)ﬁ(n) = "
which means that w — st — fn, > f does not hold forall 0 <y,n < 1.

3. Korovkin type approximation

Reference [28] initiated the Korovkin type approximation theory. Many different researchers in
[2,3,4,5,7,8,9,11,15,16,18,19,22,25,26,31,32,33,36,38,39] have used this theory by means of statistical
convergence, statistical uniformly convergence, equistatistical convergence, af -statistical convergence,

statistical C; summability and etc.

In this paper, we consider the space D,,, of real-valued functions, defined on E and satisfying

u X

f @) = Fay] < w; (f ]2 -

1+u 1+x

v y )
1+v  1+yl/)’

)

where w, is defined as a non-negative and increasing function on E = [0, ©) X [0, o), such that lims, 5, e

w, (f; 81, 8,)=0 and we have the following;
1) wy(f; 61 + 62,6) < wy(f361,8) + W (f; 62, 6).
2) wy(f; 6,6, + 65) < wy(f6,6,) +w,(f; 6, 65).

Theorem (3.1) Let L,,,:D,, = Cz(E) be a sequence of positive linear operators, if 0 <y,n <1 and let

(a,B) € A, then forall f € D,,,,

stup = Lnn(f5,9) > f(x,9) (3.1)

if and only if

stig = Lmn (@i %) > 9;(x,y) (3.2)

for i=0,1,2,3 where o (1, v) = 1, 03 (1, 1) = 7 92(w, ) = =, 93w, v) = 9 (W, V) + 93 (W, V).

+u’

Proof. Suppose that (3.2) holds, now take a fixed point (x,y) € E as an arbitrary point and let f € D,,, so there
exits 8;, 8, such that |f (u, v) — f(x,y)| < ¢, holds for all (v, v) € D satisfying,
| — - | <6 and | ——-2| <6,

1+u 1+x 1+v 1+y

Let Es, 5, be the set of all (w, v) € E such that
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<6 and |- -2 <8
1+u +v 1+y

so clearly we have the following,
f@v) = fE )| < &+ 2Nxe\gs o, (0 V),

where x; denotes the characteristic function of the set Eand N =|| f llc, ). On the other hand,

XE\Es, 5, (W V) S 57 (m -+ (m - m)z-
Taking § = min{6,, 8,} in the last two inequalities we have,
u o x v _ Yy
f@v) = feN] < e+ G {Gm 1) + G o) (3.3)

By linearity and positivity of the operators L,, ,, Clearly we have,

—9%x,)

1+u 1+x

| mn(f X, y) f(x Y)l < SLmn((vax y) + 52 mn((

 Lnn (= = 77075 %,Y) + Nl (90 %,Y) = 90(x, ).

1+y

Using the boundedness of f, (3.3) and normal process of Korovkin theorem we have,
4N
L (f;,3) = fCuy) S €+ (€ + N+ <5) | Linn(@0; X, ) = @o(x, Y)
4N
+ 52 ULmn (01 %,Y) = @100 )| + | Lina(@2; %, ¥) — 2 (X, Y)1}

2N
+52 Lmn (@35 %,7) — @3(x, ¥)|.

LetA=¢+ N + then we have

o (F5%,9) = F G < 2 + AT Il (915%,7) = 90 )] 34)
Now choose 0 < ¢ < I for any given I and define the following sets:
10y = (k) € [am), BGm] X [a(0), BT iy (%) = o) 2 1)
iy = (k) € [atm), BGm)] X [a(), B Li (9%, 7) = 91| = 55}

for i=0,1,2,3, obviously
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3
T(oy) € UTi (). (35)

On the other hand the following real functions are defined as

Pmnlyn xy) =

and

prln,n,l,y,n (x' y) =

|{(k;j)€[a(m)rﬁ(m)]X[a(n)rﬁ(n)]:|Lk,j(f:er)_f(er)|2l4__;}|

(Bm)—a(m)+ 1)1 (B(M)-a(m)+1)Y

I{(k.)€E[a(m),B (m)]X[“(n):ﬁ(n)]:|Lk,j(‘Piier)_<Pi(er)|zl4__BE}|
B)—-am)+1)Y (B(M)—a(m)+1)"

fori=0,1,2,3and 0 < y,n < 1. As a consequence of (3.5) we have

3
pm,n,l,y,n (X, y) < 'Zoprln,n,l,y,n (x' y) (3'6)
=

for all (x,y) € E. Taking supremum and limit on both sides of (3.6) we get,

3

limn,m I Pmnlyn (') ”CB(D)S limn,m Z 0 Il p;n,n,l,y,n (" ) ”CB(D)'
i=

asm,n — oo, and using (3.2) we obtain (3.1) which completes the proof of (3.2) = (3.1). The inverse side is

clear.

Theorem (3.2) Take Ly, »: Dy, = Cg(E), 0 <y,n < 1and let (a, B) € A. Thus for any function fin D, .

if and only if

stup = Lmn(F3,9) 2 f(x,9) (3.7)

St;’z - Lm,n((pi; xl J’) :)’ (pi(xl Y) (38)

u

for i=0,1,2,3, where @, (u,v) =1, ¢, (u,v) = o 92 (u,v) = 117?,(;)3(11, v) = @, (u, v)? + @, (u,v)%

+u’

Proof. Applying the same steps of the proof of Theorem 3.1 and taking supremum over (x,y) € E from (3.6)

we get the following inequality,

I Lm,nf - f < A{” Lm,n(po — ®o I+ Lm,n(pl — @1 I+ Lm,n(pz ) I+ Lm,n<p3 — @3 ”} +¢g,

where A =¢+ N + Z—IZ. Now for a given a > 0, choose 0 < € < a with the following sets

HYP:={(k, ) € [a(m), B(m)] x [a(n), BO)]: I Li;(fs 2, %) — F (. ¥) ey a}

135



International Journal of Sciences: Basic and Applied Research (1JSBAR) (2021) Volume 55, No 1, pp 126-143

HY, = {(k, ) € [a(m), Fm)] X [a(m), B)]: Il Ly j (93 %, ¥) — 9:(,¥) llegey= %} i=1,2,3.

Therefor we have
3
H% < UH.
i=0
This implies that,
3
5P (HY,y,m) < ¥ 6%F(H*,y,1)
i=0

using (3.8), completes the proof. The implication (3.7)= (3.8) is clear.

Considering the following operators;

B9 = Ty S Gt () ()
mn 09 = ramd g 2oy ks i n =i+ 2 U Y

where E = [0, %) X [0,), f € D,,,, (x,y) € Eandn € N.
Using B, »(f, x,y) we can introduce the following positive linear operators;

Tm,n(f; xy)=(01+ hm,n(x: y))Bm,n(f; xY),

where h,, ,(x,y) is the double sequences of bivariate functions, given in the Example 2.12. The following are

easily seen.
Tm,n((po;x' y)=1+ hm,n(x: y)

Trn (@13 %,Y) = (1 + Ry n (36, 1)) () ()

1+m” “1+x

T (92:,7) = (L + hypn (06, 7)) () (22)

1+n” “1+y

m@m-1) x? m_ x
(m+1)2 (1+x)2  (m+1)2 1+x

Tm,n((p3;x' y=>0+ hm,n(x: YN

n(n-1) y? n y

M+D)2 (142 | (n+1)2 1497

Tnn Satisfies in the condition of (3.2) and as h,, ,, is weighted a-equistatistical convergent to zero of order

(v,7m) so by Theorem (3.1) we have,

styg = Tnn(f3%,9) > f(x,9). (3.9)
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¥n _
But, st ap ~

hmn/3 0 and the condition (3.8) does not hold, therefore
stug = Tnn (5,9 2 f(x,9),

does not hold. It means, af-equistatistical convergence of order (y,n) can not be changed by af-statistical

uniform convergence of order (y,n), in (3.9).

Theorem (3.3) Let Ly, ,:D,, = Cg(E), 0<y,n<1, (ap) € Aand let p, and gq,, be sequences satisfying
(2.1) and (2.2). Thus for all f € D,,,,,

w = sthy = Lyn(f;%,7) > f(x,9) (3.10)
if and only if

w = stpp = Lma (@i %,) > ¢;(x,y) (3.11)
fori=0,1,2,3 where ¢o(w,v) = 1, 91 (w,v) = = (W, v) = 7 9s(w.v) = 01 (w, )2 + @, (u,v)%

Proof. Using (3.4) we have the following equation,
3
L (fi%,9) = fe,¥)| < €+ A_Zole,n((pi: xy) = @i(x, )|,
i=
whereA=¢e+ N + ¥ Nowif 0 < & < s for any arbitrary s, then we can define the following sets,
Rs(x,y) = {(k,)) € [Crm, Din] X [An, Bpl: 01| Li ; (f5%,¥) — f(x, )| = s}

Ri(x,y) = {(k,)) € (k,)) € [Cony D] X [An, Bul: il L j (055 %, 7) = 9: (6, )| = 5=

for i=0,1,2,3. It is obvious that
3 .
Rs(x,y) & URs(x, 7). (3.12)
i=

Now define the following real valued functions:

{06, ) € [Cons Pin] X [An, Ba): ity L j (F 2,9) = F (6, 9)] = -
(Dm - Cm + 1)Y(Bn - An + 1)"

hm,n,,s,y,n xy) =

and
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i S—&
[{(k, /) € [Cin, Din] X [An, Byl: Picj|Li(pis %, ¥) — @i (%, ¥)| = 757}

(Dm - Cm + 1)Y(Bn - An + 1)”

hin,n,s,y,n xy) =
fori=0,1,2,3 and 0 < y,n < 1. Then as a consequence of (3.12) we have
3 .
hm,n,s,y,n (x, y) < 'ZO h;n,n,s,y,n (x! y) (3.13)
i=
for all (x,y) € D. Applying supremum and limit on both sides of (3.13) we get,
. . 3 i
llmm,n ” hm,n,s,y,r] () ”CB(D)S llmm,n 'ZO " h;n,n,s,y,n () "CB(D)'
i=

as m,n — oo and using (3.11) we obtain (3.10) which completes the proof of (3.11) = (3.10). The inverse

implication is clear.

Theorem (3.4) Let Ly, :Dy,, > Cg(E), 0<y,n <1, (a,p) € Aand let p, and g, be sequences satisfying
(2.1) and (2.2). Therefore for all f € D,,,,

W= Sthl = Lna(F2,5) 3 f(x,9) (3.14)
if and only if
W = StLL = Linn (055 %,Y) 3 0i(x,y) (3.15)

for i=0,1,2,3 where @, (u, v) = 1, @, (u,v) = ﬁ 0, (u,v) = 1j—v 031, ) = @1 (1, v)? + @, (u, v)2.
Proof. Applying supremum to both sides of (3.13), then we have the following,
I Lm,nf - f = A{” Lm,n(po — Po I+ Lm,n(pl —¢1 I+ Lm,n(pz — @2 I+ Lm,n(p3 — @3 ”} +&,

whereA=¢+ M+ ;—“24. Now for a given t > 0, choose 0 < ¢ < t and define the following sets:

GP:={(k,J) € [Cry D] X [Ap, Bal: iy I Licj (5 %, %) = £ (6, ¥) Ny t}

4B

. t—&.
G = {(k, J) € [Cony D] X [Ap, Bul: Py I L j (@55 %,Y) — (6, ¥) Ncgpy= }l =0123.

So we have

3
¢*# < UGH.
i=0
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This implies that,
3

54 (G, y,n) < 3 8% (G, y,m),
i=0

which completes the proof of (3.15) = (3.14). The inverse implication is obvious. Now lets define Ty, ,,(f; x, y)

as a positive linear operator,

Tr?t,n(f; x,y) =1+ hm,n(x' y))Bm,n(f; x¥),

where h,, ,,(x,y) is the double sequence of functions of two variables, considered in Example 2.13. If p,, = n,
qm = m, a(n) = a(m) = 1and B(n), B(m) € N for all n, m, then for any 0 < y,n < 1, the double sequence
of positive linear operators T, , satisfy the conditions (3.11) (see Example 2.13). Hence by Theorem 3.3, we

have
W = sthp = Tan(fi%,7) > f(x,7),
but since T, ,, does not satisfy conditions (3.16)
w— Sth/z —Ton (5,93 f(x,9).
4. Rates of weighted af-equistatistical convergence of order (y,1n)

In this part, using the modulus of continuity, the rates of weighted af-equistatistical convergence of order (y,n)

of L, , as a positive linear operators defined on D,,,, is studied .

Definition (4.1) Considering a,,, as a double sequence which is non-decreasing. A double sequence of
bivariate function f,,, is called weighted af-equistatistical convergent of order (y,7) to function f with the

rate of a, , for every € > 0 we have,

[k, ) € [Cry D] X [Ary BryJ: Py fies ) = fCe | Z €}l
(Dr1 - Cr1 + 1)V(Br2 - Arz + 1)nar1,r2

0

uniformly, with respect to (x,y) € D, where p, and q; are sequences satisfying (2.1) and (2.2) in this case we

show itby w — (finn — f) = 0(amn v, 1) (@f — equistat).

Lemma (4.2) Take two double sequences of functions f,, , and g, », in H,,,, in the way that

W = (fmn = f) = 0(@mn v, m)(aff — equistat)

and
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W = (Gmn — 9) = 0(byn, v, m)(af — equistat)
thus the following are true,

1) foun + 9mn is weighted af -equistatistical convergent of order (y,n) to f+g with the rate

(max{amn bmn})-
2) (fmn) (gmn) is weighted aS-equistatistical convergent of order (y,n) to fg with the rate a,, b

)

3) For any scalar number M, M(f,, ) is weighted af-equistatistical convergent of order (y,7n) to M(f) with

the rate a,,, ,, .

4) w = (\/ fm,n -f)= O(am,n: v, n)(af — equistat).

Proof. 1) Assume that (f,,,,) is weighted a5-equistatistical convergent of order (y,n) to f with the rate of a,, ,,
and (g.,,) is weighted af-equistatistical convergent of order (y,n) to g with the rate of b,,, on D. For any

e > 0and (a, B) € A consider the following sets,
Vinnap (¥, €) = [{(k, ) € [Coy D] X [An, Bul: Pie@j| (fiej + 9i ) (2, ¥) — (f + 9) (X, ¥)| = €}

Vinap®,€) = [{(e,)) € [Cr Din] X [An, Bnl: i1 ficj (6, ¥) = f (1, 9] 2 2}

£
Va6, €) = |{(k, ) € [Co, Din] X [Ap, Ba): Picdjl g1, (6, ¥) — g (6, )| = 3.

It is obvious that,

1
Vin,a,p(XY,€) < Vinn,a,p(%::€)

DOm—Cm+1)Y (Br—An+1)Tcmn ~ (Om—Cm+1)Y (Bn—Ant+1)Tamn

Vrfz,n,a,/} (x' Y, 5)

+
(Dm - Cm + 1)Y(Bn - An + 1)nbm,n

Cmn = Max{am n, by rn}. If we apply limit to both sides of above inequity as m,n — oo and using the

hypotheses of Lemma (4.2), the proof of 1) is completed. The proof (2)-(4) can be obtain in the same way.

Theorem (4.3) Take the positive linear operator L, »,: D,,, = C(E) and assume the following properties are true,

i) Lmn (fo; x, ) is weighted af-equistatistical convergent of order (y,n) to f, with the rate of a,, ,,.

i) w(f, Omn) = 0(bmn v, M) (af — equistat) where &, = vV Linn($?x,y) with @%5xy)=(u—x)*+
-y
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Then, for all f € D,,, we have, Ly, ,(fo; x,¥) is weighted af-equistatistical convergent of order (y,n) to f

with the rate of c,, , where ¢, , = max{a;, , bmn}-

Proof. Let f € D,,, and let (X, y) be a fixed point of E thus it is well known that,

Lina(F52,9) = £ <UL f(0¥) Ny, Lann(fo; %, ¥) = o, Y| + 20(f, Smpn) [ L (fo; %, ¥) = fo (%, ¥)]

+w(fr Sm,n)\/le,n(fO; xuV) - fo(x'Y)L
Using the hypothesis, and Lemma 4.2, in the above inequality, completes the proof.
5. Conclusion

We use a correct modification to introduce weighted af-equistatistical convergence of order (y,n) for double
sequences of functions and also we study Korovkin type approximation theorems via weighted af -
equistatistical convergence and af -statistical uniform convergence of order (y,n) for double sequences of
functions of two variables on E = [0, o) X [0, o). Approximation results are illustrated on some examples of
positive linear operators to show that our definition works. We also bring some examples to show the
differences between weighted af-equistatistical convergence, weighted a3 -statistical pointwise convergence
and weighted af -statistical uniform convergence. Furthermore the rate of weighted af -equistatistical
convergence of order (y,n) is studied. One can consider the definition af3-equistatistical convergence and
weighted a3-equistatistical convergence and uniform af-statistical convergence for blending type Bernstein

operators.
References

[1]. A. Pringsheim. (1951). “Zur Teorie der zweifach unendlichen Zahlenfolgen. ”Mathematische
Annalen, vol. 53, no. 3, pp. 289,321.

[2]. E.Erkusand O.Duman. (2005). “A-statistical extension of the Korovkin type approximation theorem.
” Proc. Indian Acad Sci. (Math. Sci.) Vol. 115, no. 4, p. 499-508.

[3]. F. Altomere and M. Campiti. (1994). “Korovkin type approximation theory and its applications.”de
Gruyter Stud. Math. (Berlin: de Gruyter), vol. 17.

[4]. F.Dirikand K. Demirci. (2010). “Korovkin type approximation theorem for functions of two variables
in statistical sense.” Turk J Math 34,73-83.

[5]. F. Dirik and K. Demirci. (2010). “A korovkin type approximation theorem for double sequences of
positive linear operators of two variables in A-statistical sense. ” Bull. of the Korean Math, Soc., 47,
n.4, p. 825-837.

[6]. G. Bleiman, P. L. Butzer and L. Hahn, A. (1980). “Bernstein type operator approximating continuous
functions on semiaxis.” Indag. Mayh., 42, 255-262.

[7]. G. A. Anastassiou and M.A. Khan. (2017). “Korovkin type statistical approximation theorem for a
function of two variables.”J. of Computational Analysis and Applications 2, 1176-1184.

141



[8].

[9].

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

[18].

[19].

[20].
[21].

[22].

[23].

[24].

[25].

[26].

[27].

International Journal of Sciences: Basic and Applied Research (1JSBAR) (2021) Volume 55, No 1, pp 126-143

G. A. Anastassiou, M. Mursaleen and S. A. Mohiuddine. (2011). “Some approximation theorems for

functions of two variables through almost convergence of double sequences.”). of Computational

Analaysis and Applications, 13, n,1, p.37-46 .

H. Srivastava, M. Mursaleen and A. Khan. (2012).“Generalized equistatistical convergence of positive

linear operators and associated approximation theorems.”Mathematical and Computer Modelling 55,

2040-2051.

H. Steinhaus. (1951). “Surla convergence ordinaire et la convergence asymptotique.”Collog.Math., 2,

73-74.

H. Aktuglu. (2014). “Korovkin type approximation theorems proved via ap-statistical

convergence.”Journal of Computational and Applied Mathematics 259, 174-181.

H. Aktuglu and H. Gezer. (2018). “Korovkin type approximation theorems proved via weighted of-

equistatistical convergence for bivariate functions.” Filomat 32:18. 62536266.

H. Aktuglu and H. Gezer. (2009). “Lacunary equistatistical convergence of positive linear opera- tors.”

Cent. Eur. J. Math. 7(3), 558-567.

H. Aktuglu, M. A. Ozarslan and H. Gezer. (2010). “A-Equistatistical Convergence of Positive Linear

Operators”J. of Computational analysis and Applications 12, 24-36.

H. Fast, la convergence statistigal Colloquium Mathematicum, 2, pp. 241,244,

H. Fast. (1951). “Sur la convergence statistique. ” Collog. Math. 2, 241-244.

J. A. Fridy, and C. Orhan. (1993). “Lacunary Statistical Convergence.”Pacific J. of Math. 160, 45-51.
K. Demirci, S. Karakus. (2013). “Statistical A-summabilty of positive linear operators.”Mathematical

and Computer Modelling, 53, n. 1-2, p. 1-13.

K. Demirci and S. Karakus. (2013). “Korovkin-type approximation theorem for double sequences of

positive linear operators via statistical A-summabilty.” Results in Mathematics, 63, n. 1-2, p. 1-13.

M. Mursaleen. (2000). “A-statistical convergence.” Math. Slovaca, 50, 111-115.

M. Mursaleen, V. Karakaya, M. Ertlrk, and F. Grsoy. (2012).“Weighted statistical convergence and its

applications to Korovkin type approximation theorem.” Appl. Math. Comput. 218, 9132-9137.

M. Mursaleen and S. A. Mohiuddine. (2015).“Korovkin type approximation theorem for functions of

two variables via statistical summability (C, 1).” Acta Scientiarum. Technology, 37, n.2, 237-243.

M. Cinar and M. Karakas, M. Et. (2013).“On pointwise and uniform statistical convergence of order o

for sequences of functions.”Fixed Point Theory Appl, 2013: 33 https://doi.org/10.1186/1687-1812-

2013-33

M. Balcerzak and K. Dems, A. Komisarski. (2007). “Statistical convergence and ideal convergence for

sequence of functions.” J. Math. Anal. Appl. 328,715-729.

M. Mursaleen and A. Alotaibi. (2012). “Korovkin type approximation theorem for functions of two

variables through statistical A-summability.” Advances in Difference Equations . 1-10.

M. Mursaleen and A. Alotaibi. (2013). “Korovkin type approximation theorem for statistical A-

summability of double sequences. ” J. of Computational Analysis and Applications, 15, n. 6, 1036-

1045.

O. Duman and C. Orhan. (2004). “u-statistically convergent function sequences.” Czechislovak Math.

J. 54, 413-422.

142



[28].
[29].

[30].

[31].

[32].

[33].

[34].

[35].

[36].

[37].

[38].

[39].

International Journal of Sciences: Basic and Applied Research (1JSBAR) (2021) Volume 55, No 1, pp 126-143

P.P. Korovkin. (1960). “Linear operators and the theory of approximation.”India, Delhi.
R. Colak. (2010).“Statistical Convergence of Order «, Modern Methods in Analysis and Its
Applications, Anamaya Pub., NewDelhi. pp.121-129.
S. Ghosal. (2016).“Weighted statistical convergence of order o and its applications” Journal of the
Egyptian Mathematical Society 24, 60-67.
S. Karakus, K. Demirci and O. Duman. (2008). “Equistatistical convergence of positive linear opera-
tors.” J. Math. Anal. Appl. 339,1065-1072.
S. Karakus and K. Demirci, K. (2009). “Equistatistical convergence of the Korovkin Type
Approximation Theorem.” Turk J Math 33,159-168.
S. A. Mohiuddine and A. Alotaibi. (2013). “Statistical convergence and approximation theorems for
functions of two variables. ”J. of Computational Analysis and Applications, 15, n.2, 218-223.
S. A. Mohiuddine, A. Alotaibi and B. Hazarika. (2014). “Weighted A-statistical convergence for
sequences of positive linear operators.”The scientific World J. 437863 8.
S. Akdag. (2017). “Weighted EquiStatistical Convergence of the Korovkin type approximation
theorems.” Results in Math., 72, 1073-1085.

S. Karakus and K. Demirci. (2010). “Equistatistical c—convergence of positive linear opera- tors.”
Computers and Mathematics with Appl. 60, 2212-2218.
V. Karakaya and T.A. Chiristi. (2009). “Weighted Statistical Convergence.” Iran. J. Sci. Technol.
Trans. A Sci. 33, 219-223.
V. Karakaya, and A. Karaisa, Korovkin type approximation theorems for weighted op-statistical
convergence, Bull. Math. Sci. 5 (2015), 159-1609.
Y. Kaya and N. Gonil. (2013). “A Generalization of Lacunary Equistatistical Convergence of Positive

Linear Operators.” Abstract and Applied Analysis.

143



