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Abstract 

This study presents findings of research conducted to improve analysis techniques of experimental data from 

coconut research. It highlights the ways of handling unaccountable variability due to the inconsistent temporal 

behavior of the experimental units in perennial crop research to obtain a precise research output. Properly 

designed field experiments are essential to identify the influence of independent variable/s on the dependent/s at 

the various stages. This document highlights the ways how the improved methodologies can be successfully 

used to reduce the experimental error in most commonly used experimental designs and types of analysis. The 

first example, the study on long term coconut fertilizer experiment designed as a randomized complete block 

design in Badalgama, Sri Lanka, compares different types of analyses via evaluating the model residuals and 

calculating the coefficient of variability (CV) to reduce the error and thereby improve the output. The statistical 

methods used in the first case study includes Repeated Measure Analysis of Variance (RMANOVA) as the 

classical method and Repeated Measure ANOVA (With single palm per plots), Linear Mix Model, and 

MANOVA with two Principal Components that represent approximately 80% variation of the data as dependent 

variables as improved methods. The model adequacy of each approach was accepted after testing normality, 

homogeneity of variance and independence of residuals. CV resulted from classical RMANOVA was 39.95%, 

while it was 39.2% from Repeated Measure ANOVA (With single palm per plots) and 16.51% from the Linear 

Mixed model.  

------------------------------------------------------------------------ 
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The lowermost CV (10.04%) resulted from MANOVA with two principal components indicating that it can be 

more powerfully used to analyze long term experiments of coconuts. The second example, the study on long 

term coconut fertilizer experiment from Bandirippuwa, Sri Lanka that failed to have normality assumption of 

parametric methods, illustrates appropriate types of the Non-Parametric analysis(F2-LD-F1) for the longitudinal 

data. The regularity of the results should be studied further with few more comparable data sets. 

Keywords: Coefficient of Variations; Non-Parametric analysis; Principal Components; Randomized Complete 

Block Design; Repeated Measure Analysis of Variance.  

1. Introduction  

Designing, conducting, and analyzing field experiments are crucial to the success of any research program.  In 

perennial crop research, different types of experiments are mainly conducted to evaluate fertilizer and 

agronomic trials and to screen breeding trials. These experiments are widely conducted as randomized complete 

block designs. Blocks in the fields are laid out perpendicular to the observed gradients and in such a way that 

plots within each block are as uniform as possible before the application of treatments. Treatments are randomly 

allocated in plots within each block. The classical methods are used to analyze the data from such experiments. 

However, it has been long term observed that these methods do not take into account the heterogeneity of 

experimental units, which inflate the experimental error by different temporal behaviors, thus end results are low 

in precision. This will eventually result in ambiguous conclusions from the experiments.  The tall form of 

Coconut, the commercially grown coconut cultivar in Sri Lanka, is a unique heterozygous genotype. Therefore, 

a special emphasis should be given to design field research with coconut palms due to multiple years of data 

collection and existing high variation between individuals. Due to the importance of experimental designs in 

coconut research, early researchers have suggested several methods to improve the power of the experimental 

designs over five decades [1]. Past studies have not taken much effort to develop new field designs but to select 

proper plot sizes for field experiments by comparing the reduction of variability and thereby the error.  The 

optimum plot size was initially concluded as 16-18 palms[2], then reduced up to 6 palms[3] and more recently 

as a single palm [4].  Even though the single palm plots are recommended in the literature, practical uses of such 

designs are hardly found. To date, the most common experimental design used in coconut research is 

Randomized complete block design (RCBD) with 6 effective palms in a plot. However, coconut research still 

suffers from high experimental error due to heterogeneity of coconut palms, their different performances in 

weather variations and finer variability that cannot be visually recognized in experimental fields may mask true 

treatment effects. In coconut field experiments, the same palms are being measured over several years on the 

same dependent variable (eg: Yield) mainly due to the perennial nature of the crop and to account for the 

temporal dynamics of the experimental patterns. Repeated measures analysis of variance (RMANOVA) is, 

therefore, used in coconut experimentation as the classical data analysis method to detect any overall differences 

between related means. RMANOVA has an advantage over independent ANOVA as this has the effect of 

increasing the value of the F-statistic due to further partitioning of within subject variability (error in ANOVA) 

into variability in subjects and error leading to an increase in the power of the test. The error of RMANOVA 

reflects individual variability to each time (how subjects react to different conditions/time). However, 

heterogeneity and unpredictable behavior of coconut palms in different years more often cause violation of the 
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sphericity assumption making within subject RMANOVA statistics are meaningless. This is due to the temporal 

fluctuation within plot variability due to different environmental responses of palms regardless of the treatment 

imposed. High variation among the individuals in similarly treated plots makes treatment mean sensitive to 

those fluctuations ultimately masking the true treatment effect. Even careful planning of the experiment cannot 

ensure total elimination of this component. Therefore, there should be a proper methodology to handle this 

uncertainty and thereby improve coconut experimentation. Therefore, there is a real need of addressing the 

current issues of failure of experimental designs used in coconut research and improve them for better 

experimental planning. This study is based on an analysis of secondary data from existing long-term field 

experiments of coconut to optimize data analyzing techniques for experimental designs in coconut research. The 

main purpose of the study is to enhance the precision of data interpretation of coconut field experiments by 

improving the method of experimental data analysis. The value of the relative efficiency of each modified 

technique will be evaluated to understand the most suitable technique for long term data analysis in coconut 

experimentation.  The research will demonstrate how some relatively simple computations and analytical 

methods can be used to improve the data analysis and thereby to improve the precision by effectively handling 

the noise. The main objective of this study is to improve the analyzing method of repeated measures data from 

coconut experiments with an improved methodology. 

2. Materials and Methods 

2.1 Data 

Data from field experiments conducted by the coconut research institute of Sri Lanka was used in the study. 

These experiments were purposefully selected as treatments were not significantly different according to the 

results of conventional analysis. The response variable in the experiment was coconut yield harvested at bi-

yearly intervals. The first experiment was initiated in 2006 in Badalgama area for determining the effect of five 

different fertilizer combinations and continued for 8 years (from 2006 to 2013). The experiment was designed as 

a completely randomized block design with four replicates and five treatments. Each similarly treated plot 

contained six palms. The second experiment was initiated in 2006 in Bandirippuwa Estate for determining the 

effect of four different fertilizer combinations and continued for 12 months (from 2006 January to December). 

The experiment was designed as a completely randomized block design with three replicates and four 

treatments. Each similarly treated plot contained six palms. 

2.2 Data Analysis Methods 

2.2.1 Classical Analysis of Data: Repeated Measure ANOVA  

Coconut experiments have the practice of measuring the outcome on each coconut tree multiple times. Most of 

the time, the outcome is the yield in bi-monthly intervals for several years, which have repeated exposure to 

changing levels of weather. Repeated measures analyses are often conducted with RMANOVA. RMANOVA is 

a member of the ANOVA family, which is used to compare group means on a dependent variable across 

repeated measurements of time. RMANOVA model includes zero or more independent variables and at least 1 
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dependent variable that has more than one observation as shown in equation 1.  

                                  (1) 

Where, Yi, j, k is the observation/measurement taken from i
th

 treatment in j
th

 block at k
th

 time point,      is the 

effect of  i
th  

treatment,     is the effect of j
th

 block,     is the parameter associated with the k
th

 time and         is 

the error term. RMANOVA is similar to the dependent sample T-Test, because it also compares the dependent 

means of the same individuals over different times.  It is necessary for the RMANOVA for the observations in 

one-time point to be directly linked with the observations in all other time points.  This automatically happens 

when repeated measures are taken, or when analyzing similar units or comparable specimen. When adapting the 

ANOVA for repeated measurements, it is essential to assume a common set of periods or schedule among all the 

individual units. This requirement can be easily met in agricultural studies. Time is often referred to as the 

within-subjects factor, whereas a fixed or no changing variable (e.g., treatment) is referred to as the between-

subjects factor[5]. The rationale underlying the RMANOVA analysis is to consider time as a factor on k levels 

in a hierarchical design with individual units (or subjects) as subplots. RMANOVA must meet the assumption of 

normality of residuals by time point and sphericity, sometimes referred to as compound symmetry. Sphericity 

requires that the repeated measures demonstrate homogeneity of variance and homogeneity of covariance. 

Homogeneity of covariance means that the relationships, or correlations, on the dependent variable among all of 

the repeated measures are equal. The probability of type I error increases, if the data set does not satisfy the 

sphericity assumption. In such cases, Greenhouse-Geisser (GG) and Huynh-Feldt (HF) methods can be 

considered as correction procedures to modify the degrees of freedom values of the time and the error/residual 

to accomplish the correction. However, the application of GG adjustment assumes a maximum violation of 

sphericity assumption hence use of GG for correcting minimal violations may enhance the type II error 

(accepting false H0). Therefore, the literature suggests [6] to apply the HF correction when epsilon is > 0.75 and 

GG correction when epsilon is < 0.75. Specification of the within subject variance covariance structure is the 

key step in the analysis of repeated measures. There are several variance covariance structures available for 

selection by analysts, and many statistical software procedures implement the compound symmetry structure by 

default. The compound symmetry variance covariance structure assumes that all the variances are equal and all 

the covariances are equal. These assumptions, however, might be incorrect and a different structure might better 

describe the variance between subjects and covariation within subjects.  Repeated measures designs, however, 

have some disadvantages compared to designs that have independent groups. Dependency in the data created by 

the repeated measures should be taken into the account when analyzing repeated measures designs. In reality, 

the scores of the dependent variable are not independent on each other and the dependency may bias the results 

because each participant responds to several stimuli, making the responses more similar within participant than 

across participants. This, in turn, creates a correlation (dependency) among repeated measures, and this 

correlation should be incorporated in the statistical models to avoid (or minimize) biases. In a design with 

response times as dependent variable, for instance, one can observe that participants tend to be different in their 

average speed of response, independently to the experimental conditions. If so, some participant will be always 

slower or faster than others, creating a correlation among measures. One way to capture dependency due to 

repetition within participants and repetition within stimuli is to employ a mixed model in which the model 
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coefficients are allowed to vary across participants and across stimuli. That is, a model with random 

coefficients. 

2.2.2 Principle Components to Adjust Dependent Variables 

Considering each of these two procedures, multivariate analysis; PCA (principal-components analysis), are 

largely used as dimension-reducing procedures for a collection of continuous variables. These techniques can 

identify a small set of synthetic variables, called eigenvectors or factors.[7] In this study, the longitudinal 

observations are dependent over time. We have 8 dependent variables in the first experimental data set that use 

to PCA on for the purpose of data reduction and the result of the violation of the sphericity in the Repeated 

Measure ANOVA method. Essentially, these measures represent eight different times of coconut yield.  After 

running the PCA analysis, check the components with eigenvalues over 1 which cumulatively account of the 

variance. The K-M-O measuring sampling adequacy gives an overall measure of variance. Then the K-M-O test 

values can be justified for PCA.[8] By using those principle components, construct the Multivariate ANOVA 

(MANOVA)[9]. Due to the independence of the chosen principal components, we can use the MANOVA. 

2.2.3 Linear Mixed Model ANOVA 

The general linear mixed model approach has both fixed and random effects in experiments as shown in 

equation 2. 

                                                                                                                       (2) 

Where y is a N×1 column vector, the outcome variable; X is a N×p matrix of the p predictor variables; β is 

a p×1 column vector of the fixed-effects regression coefficients (the βs); Z is the N×qJ design matrix for 

the q random effects and J groups; u is a qJ×1 vector of q random effects (the random complement to the 

fixed β) for J groups; and ε is a N×1 column vector of the residuals. It also has the potential of accommodating 

multiple missing data points[10] and higher order, nonlinear changes in the dependent measure across time. 

With these broad possibilities for modeling longitudinal data, the mixed model approach is becoming 

immensely popular in the experimental literature. The mixed model has several unique abilities to;  

 Characterize group and individual behavior patterns in a formal way 

 Acknowledge both group and individual differences 

 Incorporate additional covariates 

The mixed model is a more subject specific model and a natural choice for analyzing longitudinal data as it 

naturally represents individual trajectories in a formal way. Unlike the RMANOVA, which requires a complete 

balanced array of data, the mixed model can accommodate a dataset with a large portion missing. Although the 

RMANOVA requires a fixed schedule among all individual units, the mixed model can accommodate flexible 

time schedules. Furthermore, rather than treating time as a categorical variable, as in the RMANOVA, the 

mixed model is capable of treating time as either a continuous variable or a categorical variable or both. 

Adaptation of time as a continuous variable allows for varied entry of participants into a study and that also 
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allows for several, generally nonequivalent possibilities for modeling behavior, for example, mixed-effects, 

marginal, and transitional models[11]. 

2.2.4 Nonparametric Analysis of Repeated Measures Data  

In most real-world situations, the distribution of observed data is unidentified and there may exist a number of 

distinctive measurements and outliers. Consequently, in practice, specific model assumptions of parametric 

procedures can rarely be verified. If dependent variables do not satisfy the model assumptions (normality, the 

randomness of the error), parametric statistical procedures may result in unreliable conclusions. Therefore, the 

use of parametric and semiparametric techniques that impose restrictive distributional assumptions on observed 

longitudinal samples becomes questionable. As an alternative, nonparametric rank-based methods that can offer 

a flexible and robust framework for the analysis could be of help.  Literature provides some evidence for using 

nonparametric marginal models in different types of longitudinal[12] developed R based software package for 

analyzing longitudinal data from commonly used factorial designs. Authors introduced a notational system for 

each design to be denoted by Fx-LD-Fy, where x and y are the number of whole-plot and sub-plot factors, 

respectively, while “LD" stands for “longitudinal data". Whole-plot factors (between subjects) are the factors, 

which stratifies samples in independent groups (eg: Treatments), while the factors, stratifying repeated 

measurements, are called sub-plot factors (within-subjects).  For such designs, the statistical model can be 

described by independent random vectors; 

 Xijk = (Xijk1, Xijkt)
 T

; k = 1, nij; with marginal distributions Xijks ~ Fijs; i = 1..., a; j = 1…., b; and s = 1…, t. The 

total number of observations is N = n.t, where    ∑ ∑    
 
   

 
   .  

The nonparametric hypotheses of no main effect (A), no main time effect (T), and no interaction (AT) between 

A and T, are expressed in terms of the marginal distribution functions: 

  
 ( )     ̅̅ ̅        ̅̅ ̅ 

  
 ( )     ̅̅ ̅        ̅̅ ̅ 

  
 (  )         ̅    ̅    ̅     i= 1…. a; s = 1…t, 

where    ̅  
 

 
∑    
 
     denotes the mean distribution over time for treatment group i; i = 

1,…….a,    ̅̅ ̅  
 

 
∑    
 
    denotes the mean distribution over the treatment groups for time point s; s = 1,…… t, 

and    ̅  
 

  
∑ ∑    

 
   

 
    denotes the overall mean distribution.  

2.3 Efficiency Calculations 

2.3.1 Coefficient of Variation 
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Coefficient of variation (CV) is a measure of relative variability (eq: 3). It is the ratio of the standard deviation 

to the mean (average). CV is particularly useful when it is required to compare results from two different 

surveys or tests that have different measures or values.  

The formula for the CV is: 

     (
                  

    
)             (3) 

When comparing different analysis methods, in particularly ANOVA, mean square error (MSE) of ANOVA can 

be used as the standard deviation of the design  because standard error (SE) of a statistic (usually an estimate of 

a parameter) is the standard deviation of its sampling distribution or an estimate of that standard deviation.  

3. Results & Discussion 

Of the two data sets used in the study, data set one satisfied the assumptions required for parametric data 

analysis while the assumptions were not met in the second data set even after several data transformations.  

Therefore, in this section, classical method (RMANOVA) of analysis of experiment design for experiment one 

data set vs improved methodologies (RMANOVA with single palm plots, MANOVA with two principal 

components, Linear Mixed Model) were compared to study how efficient those methods are to reduce the 

experimental error and thereby increase the precision of experimental design. Next, the section explains how 

nonparametric methods were used to analyze experimental data when the normality assumption of the classical 

method (Repeated Measure ANOVA) was violated using the second data set. 

3.1Classical Repeated Measure ANOVA (Experiment -one Analysis) 

Most statistical techniques assume certain characteristics of the data. A valid interpretation of results requires 

that one or more such assumptions be satisfied. Therefore, the assumptions of RMANOVA were checked as a 

violation of these assumptions changes the conclusion of the research and interpretation of the results.   

3.1.1Normality 

RMANOVA assumes that the test variables follow a multivariate normal distribution in the population. 

Therefore, normality of the data set was checked with the Shapiro-Wilk test (Table 1) as it is more appropriate 

for small sample sizes (< 50 samples). As raw data did not satisfy the normality assumption, data were square 

root transformed to achieve the normality. All the test variables with square root transformation satisfied the 

normality assumption as they were not significant at the 5% level of the significance (Table 1). 

 

 

 

https://en.wikipedia.org/wiki/Statistic
https://en.wikipedia.org/wiki/Statistical_parameter
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Sampling_distribution
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Table 1: Tests of normality for annual per palm yield data of experiment 1 from 2006 to 2013 according to 

Shapiro-Wilk (SW) test 

Year 
Raw Data Square Root Transformed 

Statistic Sig. Statistic Sig. 

2007 0.97 0.01 0.99 0.73 

2008 0.96 0.01 0.99 0.75 

2009 0.99 0.37 0.99 0.60 

2010 0.99 0.33 0.99 0.69 

2011 0.98 0.17 0.98 0.26 

2012 0.98 0.13 0.98 0.28 

2013 0.94 0.00 0.98 0.27 

3.1.2 Sphericity 

The most important assumption in RMANOVA is that variances of all differences between all possible pairs of 

repeated measures factor must be equal in the population. The violation of sphericity should be seriously 

considered as it causes an increase in the type I error rate making within subject RMANOVA statistics are 

meaningless. Sphericity was tested with Mauchly’s test and results were given in table 2.  

Table 2: Tests of sphericity for annual per palm yield data of experiment 1 from 2006 to 2013 according to 

Mauchly’s test 

Within Subjects 

Effect 
Mauchly's W 

Approx. Chi-

Square 
df Sig. 

Epsilon 

Greenhouse - 

Geisser 
Huynh-Feldt 

Time 0.05 288.59 35 0.00 0.49 0.55 

 

According to table 2, the sphericity assumption was violated indicating that the variance of coconut palms in 

different years were not equal.  Therefore, degrees of freedom for the averaged tests of significance were 

adjusted using Greenhouse Geisser correction as the epsilon estimate was below 0.75. Adjusting df for lack of 

sphericity using Greenhouse Geisser correction, within subjects’ effects (Time effect) were compared and 

results revealed that the time effect was significant (df=3.75, F=9.82 and sig.=0.00). This indicates that there 

are significant differences between repeated measures. However, results further revealed that Time * Treatment 

interaction was insignificant (sig. = 0.06) indicating that temporal behaviour of each treatment was consistent at 

95% confidence. However, with 1% increase of the probability level, Time * Treatment interaction becomes 

significant giving an indication that temporal behaviour of different treatments can be different due to high 

heterogenic behaviour among individual palms.  
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Table 3: Tests of between-subjects’ effects with Greenhouse Geisser correction in classical RMANOVA 

Source 
Sum of Squares 

(Type III) 
df Mean Square F Sig. 

Intercept 1,390.00 1 1,390.00 172.06 0.00 

Cov. 527.10 1 527.10 65.25 0.00 

Treatment 18.32 4 4.58 0.57 0.69 

Block 49.21 3 16.40 2.03 0.11 

Error 815.91 101 8.08   

 

Tests of between subjects in classical RMANOVA (Table 3) indicated that treatments were not significantly 

different. Results indicated that insignificance of treatment effect may either be due to insignificant treatment 

effect or low precision of analysis methods due to high variability between subjects. In calculating the efficiency 

of RMANOVA in terms of CV, the mean square error (8.08) of the model was used as the standard deviation of 

the design. Residual analysis of the model confirmed that residuals were independent, normally distributed 

having a constant error variance (Table 4). 

Table 4: Tests of normality with Shapiro-Wilk test, independence with Box-Pierce test and constant error 

variance with Levene Test 

Residual for Year 
Box-Pierce test Shapiro-Wilk Levene Test 

X-squared Sig. Statistic Sig. Statistic Sig. 

2007 1.08 0.30 0.994 0.89 3.16 0.02 

2008 0.07 0.79 0.989 0.51 2.26 0.07 

2009 1.80 0.18 0.988 0.46 0.54 0.71 

2010 3.69 0.05 0.989 0.53 0.20 0.94 

2011 0.01 0.91 0.978 0.07 0.65 0.63 

2012 2.09 0.15 0.988 0.44 0.35 0.85 

2013 1.81 0.18 0.992 0.77 1.08 0.37 

  

3.2 Repeated Measure ANOVA (With single palm plots) 

In the previous analysis, we considered five treatments in four blocks in which each plot contained six palms. 

Therefore, in classical RMANOVA, an average of six palms was taken to represent the effect of a particular 

treatment. The danger of taking an average of several individuals (six palms here) to represent the plot value for 

a particular treatment effect is that the mean value is sensitive for extreme behaviors of palms, which is very 

common in coconut. Use of covariate (same variable recorded prior applying the treatments) to adjust the initial 

variability between treatments may have a little effect in classical analysis if individuals are highly 

heterogeneous. This is because, use of the mean of the covariate to adjust the plot means may not represent the 

true variability between individuals. And use of the previous year yield may not be that influential to control the 
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variability if the temporal behavior is not consistent among individuals. However, we assumed that if we 

consider single palm plots for the analysis, initial variability can be adjusted with the prior measurements of the 

same palm without averaging. Therefore, RMANOVA with a single palm plot approach was used to analyze the 

data with the aim of reducing the experimental error. As there were six palms in each plot and a block contains 

five such plots (five treatments), hypothetically 7776 (6
5
) single palm plot combinations can be organized in one 

block.  Besides, there are three such blocks in the experiment. Therefore, if we are to compare the error 

reduction in single palm plots, we have to perform RMANOVA for a large number of combinations. In this 

study, we simulated 100 such designs and the results of one analysis are shown below as an example. Here, 

results suggested that the degrees of freedom of the within subjects’ effect should be adjusted with either 

Greenhouse-Geisser or Huynh-Feldt correction as the sphericity assumption was violated as per the Mauchly’s 

test (table 5). 

Table 5: Tests of sphericity for annual per palm yield data of experiment 1 from 2006 to 2013 according to 

Mauchly’s test 

Within 

Subjects 

Effect 

Mauchly's W 
Approx. Chi-

Square 
df Sig. 

Epsilon
b
 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

Time 0.05 236.70 35 0.00 0.49 0.68 0.12 

After adjustment of the df to correct the sphericity violation, the results of within subjects’ effect of the 

experiment indicated that there is a significant time effect but all the treatments behaved similar in different 

times. Significance of time effect was obvious in both above analysis with very high probability of significance 

(sig. 0.00).  According to the results of between-subjects’ effects in single palm plot RMANOVA (Table 6), the 

MSE was 7.78 (in this particular example), which is slightly lower than what obtained in the classical 

RMANOVA (8.08).  We computed 100 MSEs by running RMANOVA for different hypothetical combinations 

of single palm plots and compared them with the MSE of classical RMANOVA using single sample t test. 

Results revealed that MSE of single palm plot analysis was significantly lower from the classical MSE 

(7.82±0.06, p=0.00) but the treatment effect remains non-significant in all the analyses.  

Table 6: Results of between-subjects’ effects in the single palm plot RMANOVA 

Source 
Type III Sum of 

Squares 
df Mean Square F Sig. 

Intercept 1029.48 1 1029.48 155.46 0.00 

Cov 273.30 1 273.30 35.13 0.00 

Block 219.41 21 10.45 1.34 0.17 

Treatment 18.49 4 4.62 0.59 0.67 

Error 645.72 83 7.78   
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Use of single palm plots with considerable number of replicates (blocks) may help in reducing experimental 

error by minimizing soil variability within a block and correctly adjusting initial variability of experimental 

units as explained above. However, hypothetical blocking in this analysis may not help in reducing soil 

variability as expected in field research. 

Results of the normality with Shapiro-Wilk test, independence with Box-Pierce test and constant error variance 

with Levene test (Table 7) proved that the assumptions of the error were not violated most of the time, hence, 

the analysis conducted was accepted as appropriate.  

Table 7: Tests of normality with Shapiro-Wilk test, independence with Box-Pierce test and constant error 

variance with Levene Test 

Residual for Year 
Box-Pierce test Shapiro-Wilk Levene Test 

X-squared Sig. Statistic Sig. Statistic Sig. 

2007 1.77 0.18 0.99 0.80 2.76 0.03 

2008 0.19 0.66 0.99 0.90 3.06 0.02 

2009 1.49 0.22 0.99 0.82 0.92 0.45 

2010 1.18 0.28 0.99 0.51 0.51 0.73 

2011 0.02 0.90 0.98 0.07 0.68 0.61 

2012 3.98 0.06 0.97 0.02 0.96 0.43 

2013 3.04 0.08 0.99 0.89 1.29 0.28 

3.3 MANOVA with Two Principal Components as Dependent Variables 

The third approach we used in the study was the formulation of a few principal components (PCs) instead of 

eight annual yield variables and use them as the dependent variables in the analysis. Here, we believed that 

projection of response variables onto a subspace using a data compression method is advantageous to reduce the 

variability between experimental units.  

Table 8: Component Matrix of Principal Component Analysis after Varimax Rotation and Kaiser Normalization 

Year Component 

1 2 

2011 0.88  

2009 0.87  

2010 0.86  

2008 0.83  

2007 0.80  

2012  0.95 

2013  0.94 
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Results of the principal component analysis revealed that the total variability of experimental data can be 

explained by two major PCs, where the first PC explained 56.27% variability, while the second explained 

22.86%. Table 8 illustrates the coefficients of each year in two principle components after Varimax Rotation 

and Kaiser normalization. Accordingly, repeated measures (years) were grouped into two clear groups defined 

by the highest loading on each year, which was evident on the component plot in rotated space that showed how 

closely related the years were to each other and to the two components. 

Then, we conducted MANOVA taking these two PCs as response variables. Results of the multivariate analysis 

of variance of the two PC’s are shown in table 9. 

Table 9: Tests of Between-Subjects Effects in MANOVA 

Source 
Type III Sum of 

Squares 
df Mean Square F Sig. 

Intercept 42.52 1 42.52 82.74 0.00 

Cov 52.66 1 52.66 102.47 0.00 

Block  2.78 3 0.93 1.80 0.15 

Treatment 1.68 4 0.42 0.82 0.57 

Error 51.90 101 0.51   

Results revealed that the MSE was drastically reduced (0.51) compared to two previous analyses with raw data 

but still the treatment effect was not significant. The model adequacy was accepted after checking normality 

(Shapiro-Wilk – 0.99, p=0.62), homogeneity of variance and independence of residuals (Box-Pierce =5.05, 

p=0.25). However, even after reducing the variability between repeated measures, treatment effect was not 

significant in neither of components. 

3.4 Linear Mixed Model Analysis  

Liner Mixed model analysis was conducted as the next method of improving the analysis of coconut 

experiments. Here, we considered the effect of individual palms as a random effect. Results of the linear mixed 

model analysis are shown in table 10. 

Table 10: ANOVA of the mixed model with six palms per plot design 

Parameter  Value Std Error df t-value P value 

Intercept  6.60 0.36 770 18.47 0.00 

Block 0.10 0.10 107 0.99 0.32 

Treatment 0.09 0.08 107 1.16 0.25 

The model found out that the extracted standard error of the model was 1.38. Model adequacy was confirmed 
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with residual analysis where normality of the residual analysis of the fixed effects (Shapiro-Wilk = 0.99695, p-

value = 0.09) and the random effects (Shapiro-Wilk = 0.99358, p-value = 0.89) was achieved. The constant 

variance of the residuals was confirmed as the residuals were randomly scattered.  Independence of the residuals 

were confirmed using Box-Pierce test (X-squared = 3.7869, df = 1, p-value =0.0522). Here also, there was no 

significant difference between treatments, but the probability of significance was comparatively lower than what 

obtained for all other analysis. 

3.5 Comparison of the efficiency of the models 

The calculated CVs for error terms of each method was shown in the Table 11.  In both classical RMANOVA 

and RMANOVA (With single palm plots) resulted comparatively higher CV close to 39 - 40%, which was in 

agreement with the CV values reported in literature for coconut experiments [4]. However, CV was 

considerably reduced in linear mixed model analysis as a result of introducing palm to palm variation as a 

random effect into the model. MANOVA with PCs showed the lowest CV but it may be due to the use of 

dependent variables in a reduced dimension. 

Table 11: Coefficient of variation of each analysis method 

Analysis Method Coefficient of Variation(CV) 
   (

                  

    
)       

Classical 

RMANOVA 

39.95%   ⁄       (            ⁄ )       

        

 

Repeated Measure 

ANOVA (With 

single palm plots) 

39.20%   ⁄       (            ⁄ )       

        

 

ANOVA with a 

Principal Component 

as Dependent 

Variable 

10.04%   ⁄       (            ⁄ )       

        

 

Linear Mixed Model 

Analysis 

16.51%   ⁄       (            ⁄ )       

        

 

3.6 Nonparametric Analysis of Repeated Measures Data (Experiment- two Analysis) 

In the second experiment, data did not follow the normal distribution to apply RMANOVA even after several 

data transformations. As mentioned in the methodology section, this data set was analyzed using a 
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nonparametric method, which was an  inbuilt R software model package (F2- LD- F1 model)[12]. Authors 

introduced a notational system for each design to be denoted by Fx-LD-Fy, where x and y are the number of 

whole-plot and sub-plot factors, respectively, while “LD" stands for “longitudinal data". Whole-plot factors 

(between subjects) are the factors, which stratifies samples into independent groups. In this data set they were 

treatments and blocks (x=2). The factors stratifying repeated measurements, which are called sub-plot factors 

(within-subjects), in the current data set was Time factor (Y=1). Accordingly, the model was in F2 –LD-F1 

structure.  Results of F2-LD-F1 model analysis are shown in table 12. 

Table 12: ANOVA table of F2-LD-F1 

 Statistic df p-value 

Treatment 0.99 2.90 0.39 

Block 1.86 1.91 0.15 

Time 21.24 4.89 0.00 

Treatment*Block 1.11 5.36 0.35 

Treatment*Time 0.97 12.43 0.46 

Block*Time 0.62 8.93 0.77 

Treatment*Block*Time 0.91 20.26 0.56 

The model found out that the treatments are non-significance and the time factor is significant at 5% level of 

significance. 

4. Conclusion 

RMANOVA with six palms per plot, the classical method, resulted comparatively high experimental error 

(coefficient of variation of error term 39.95%). The first improved method, RMANOVA with single palm plot 

resulted CV =39. 2%, which was nearly equal to what obtained with classical analysis. It was observed that the 

reduction of error was negligible.  Multivariate ANOVA conducted with two main principal components 

reduced CV by three times (10.04%) compared to the classical method. Results clearly showed a reduction of 

experimental error than the classical RMANOVA too. This may be because the model used modified dependent 

variables in a reduced space. This method was preferable over others as each principal component was a linear 

combination of the original features while preserving as much as possible from the total variance of the data. So, 

by performing dimensionality reduction using PCA and coupling it with MANOVA, it was expected to reduce 

the within class variability and increases between-classes variability. The Liner mixed model, with its broad 

possibilities for modeling longitudinal data, also resulted comparatively lower CV (16. 51%) than classical 

RMANOVA but higher than Multivariate ANOVA with two PCs. None of the analyses resulted significant the 

treatment effect even if the error was reduced. Considering the efficiency, MANOVA with two Principal 

Components as dependent variables can be recommended as the better way of handling the heterogeneity 

problem of coconut palms but results need to be validated with more longitudinal data sets. For the type of data 

that violates parametric model assumptions, a non-parametric method such as F2–LD- F1would be a good 

method to analyze longitudinal data.  However, the results cannot be compared to the results of the parametric 
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methods.  

5. Limitations & Recommendations 

The biggest limitation in coconut experimentation is the high variability between experimental units and their 

different temporal behaviour. As being a perennial plant, it is compulsory to have multiple years data collection 

on the same parameters. Therefore, a better data analysing method is required to handle longitudinal data with 

high variability. Above analysis were experimented with the aim of reducing error is one such data set but 

results need to be generalized with several similar kind of data sets. In addition, literature provide evidence for 

applying Bayesian modelling successfully on such data. Therefore, Bayesian methodology will also be tested 

and compared on coconut data as it is expected to generate more accurate results with it than classical inference 

methods because Bayesian models have the capacity for analyzing intra-individual variability as a predictor. 
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