

Distances to Planetary Nebulae Using Astrometric Data of Gaia DR2

Eman Algarni*

Astronomy and space science department, King Abdulaziz University, Jeddah Email: algarnieman@gmail.com

Abstract

The present work is dedicated to deriving the distances of Galactic planetary nebulae using the parallax measurements of Gaia Data Release 2 (DR2). By applying an accurate calibrating sample of distances derived from Gaia DR2, we aim to examine the consistency between Gaia DR2 trigonometric distance and prior trigonometric distances as well as other individual methods usually used for distance determination. We started by searching the literatures for confirmed planetary nebulae (PNe), known up to this time, followed by discussing the method used for selecting PNe central stars from Gaia DR2. We were able to identify 2170 Gaia DR2 sources classified as PNe, from which we ignored all sources with negative parallax values, unmeasured parallax, and unmeasured colours. Only true CSs with parallax uncertainties less than 25% were adopted. As a result, a sample composed of roughly 200 PNe with highly accurate parallax measurements was selected. By comparing Gaia DR2 trigonometric distances with the previous ground-based trigonometric distances and those obtained by the Hubble Space Telescope we found that: (1) The ground-based trigonometric distances obtained by Pottasch (1996) [1] and Gutiérrez-Moreno and his colleagues (1999) [15] perfectly matched Gaia DR2 distances. However, the trigonometric distances given by Harris and his colleagues (2007) [5] show somewhat smaller values; (2) The space-based distances, using HST [16], are slightly higher than that of Gaia DR2 with an average ratio of 1.1. By comparing Gaia DR2 trigonometric distances with other individual distance methods we concluded that the spectroscopic method is the best subsequent method for determining the PN distance after the trigonometric method. Applying other methods should take with care especially the gravity method.

Keywords: Distances; Gaia DR2; Planetary nebulae; general.

^{*} Corresponding author.

1. Introduction

The major difficulty that faces many of planetary nebulae (PNe) studies is their unreliable distances. This strong handicap obstructs astronomers from finding a trustworthy solution for some PNe quantities, such as the Galactic chemical gradients and the formation rate [1, 2]. During the past decades, many efforts have been made to find methods of PNe distances determination, but the accurate distances are known for a sufficiently small number of PNe. In general, the methods used to determine the PNe distances are classified into statistical and individual methods. The statistical methods are divided into two groups. The first group assumes that one of PNe parameters is constant for all PNe at every stage of their evolution. The pioneer method of this group was developed by Shklovsky (1956) [3] who assumed all PNe have approximately the same ionized mass. The second group relies on an empirical relation between two nebular parameters one of which to be distancedependent, e.g. radio surface brightness versus nebular radius. On the other hand, the individual method can be used as independent ways to determine distances of PNe. General speaking, the individual methods are more accurate than statistical ones, but their applicability are limited to a handful PNe. The known individual methods providing reliable distances for PNe are the trigonometric parallax, spectroscopic parallax for a companion of the PN central star, cluster membership, reddening (extinction), angular expansion and gravity. Some of these methods are more accurate than others and each one of them has its own assumptions and limited applications [4]. The trigonometric parallax is the direct and most precise way used to determine the distance for only nearby object. unfortunately, the numbers of PNe with measured trigonometric distance prior to the Gaia era were very few [5,6,7]. This long-standing problem is about to be solved with the recent and upcoming space-based trigonometric parallax measurements of Gaia mission, at least for nearby planetary nebulae. Currently, Gaia mission provides the parallax measurements for ~ 1.7 billion stars. Not only the extracted Gaia parallaxes increase the number of PNe with trustful distances but can also be used to test the quality and precision of other methods usually applied to derive the distances of individual PNe. The main goals of the present work are to: (1) Extract the parallax measurements for the central stars of planetary nebulae using the second Data Release of Gaia "Gaia DR2" (2) Examine the consistency between Gaia DR2 trigonometric distances and prior trigonometric distances (3) Discuss the comparison between Gaia DR2 trigonometric distance and other individual distance methods. The article is structured as follows: Sect. 2 introduces the data sample. Extracting central star Gaia DR2 parallaxes is given in Sec. 3. Gaia DR2 trigonometric distances versus prior trigonometric distances are presented in Sect. 4 The Comparison between Gaia trigonometric distances and other individual distances methods is discussed in Sect. 5, while the conclusions are given in the last section.

2. Database catalogues

2.1 sample selection

We prepare two data samples of planetary nebulae. The first sample "Sample I" contains all PNe whose central stars (CSs) have been spectroscopically confirmed as PN ionizing star (~ 560 PNe) [8,9,10,11,12]. Since this sample includes a small fraction of observed PNe, we extract a second sample "Sample II" from the Hong Kong/AAO/Strasbourg H α (HASH) planetary nebula catalogue [13]. Currently, this is the largest catalogue of Galactic PNe containing ~ 3500 true, likely, and possible PNe. The second sample includes only the true PNe in

the HASH catalogue (~ 2480 PNe). Most of the nebulae in "sample I" are involved in "Sample II". The purpose of providing "Sample I", although it has less PNe than sample II, is that their members are confirmed CS. On contrary to Sample I, not all nebular central stars in Sample II were detected or their photometric and spectroscopic parameters were measured.

2.2 PN central star colour

The CS is the source of the UV radiation that ionizes the nebula; therefore, it must appear as a blue star and lies at or very close to the PN centre. Reviewing the photometric catalogues of PNe, few CSs appear as red stars $(B - V \ge 0.0)$ [14]. This attribute to high reddening in the line of sight to the PN or internal to the nebula itself, or due to visible light being dominated by a main sequence close binary companion. We notice that most of the true red CSs in Gaia DR2 (BP - RP > 0.0) are associated with high flux excess factors, which frequently refer to inaccuracy in determining the blue and red photometric magnitudes.

2.3 Searching Gaia DR2 for PN central stars

- We search the Gaia DR2 sources^a that match PNe equatorial coordinates of all objects in Sample I and Sample II. A search is applied through circles of 0.5, 1.0, 2.0, 5.0, and 10.0 arcsec size centred on each PN. We use such big circles because the coordinates of extended PNe in old catalogues and PNe interact with ISM are often not centred on the central star. Frequently, the true CS lies exactly at the PN centre or within an angular distance less than 2.0 arcsec.
- 2. We reject all Gaia DR2 sources with negative parallax, unmeasured parallax, and unmeasured colours.
- 3. Since all sources in Sample I are confirmed CSs, we adopt all central stars even if they appear as red stars. For the CSs in Sample II, we ignore the red stars following the results of these four steps: (I) Check the uncertainties of BP and RP magnitudes. (II) Search for blue star lies within the nebular central area. (III) Inspect literature for another photometric measurements confirm the reality of the CS. (IV) Check the flux excess factor of the star. Based on the result of these steps we decide if it is a true central star or not.
- 4. We perform visual inspection for the matched Gaia sources through the Simbad database^b and its associated Aladin Lite^c preview.

3. Extracting central star Gaia DR2 parallaxes

The Gaia DR2 sources matching the criteria for true PNe central stars are 504 in Sample I and 1666 in Sample II. However, many matched sources have negative parallaxes values, no parallaxes at all, and miss colours. To obtain a target sample of CSs with high confidence trigonometric distances, all CSs with parallax uncertainties larger than 25% are ignored. The final sample is composed of 200 objects and given in the appendix. Table 1

^a https://gea.esac.esa.int/archive/

^b http://simbad.u-strasbg.fr/simbad/

^c Aladin is an interactive sky atlas allowing the user to visualize digitized astronomical images or full surveys, superimpose entries from astronomical catalogues or databases, and interactively access related data and information from the **Simbad** database.

and 2 summarize the search results of Gaia DR2 sources that matched the CSs of planetary nebulae in Sample I and Sample II.

	0.5 arcsec	1.0 arcsec	2.0 arcsec
Total	418	461	504
No parallax measurements	42	47	63
Negative parallax	53	58	66
No colour	21	22	24
Blue and Red stars	302	334	351
Blue: Parallax < 25%	89	91	93
Parallax: 25% - 50%	30	35	37
Parallax > 50%	13	18	18

Table 1: Search results in Gaia DR2 database for the CSPNe - Sample I

Table 2: Search results in Gaia DR2 database for the CSPNe in HASH catalogue - Sample II

	0.5 arcsec	1.0 arcsec	2.0 arcsec
Total	796	1097	1666
No parallax measurements	147	250	478
Negative parallax	140	190	310
No colour	57	78	146
Blue and Red stars	452	579	732
Blue: Parallax < 25%	56	59	63
Parallax: 25% - 50%	30	37	40
Parallax > 50%	27	39	49
Blue: Parallax < 25% Parallax: 25% - 50% Parallax > 50%	432 56 30 27	59 37 39	63 40 49

4. Gaia DR2 trigonometric distances versus prior trigonometric distances

Figure 1: Comparison between the Gaia DR2 trigonometric distances and prior trigonometric distances. The diagonal solid line represents the one-to-one correlation.

There are several PNe in Gaia DR2 whose trigonometric parallaxes have been already measured either from the ground or from space. Gutiérrez-Moreno and his colleagues (1999) [15] presented ground-based parallaxes for three nebulae, one of which has parallax measurement in Gaia DR2 (PN A66 21). By comparing the Gutiérrez-Moreno and his colleagues (1999) [15] and Gaia DR2 distances, an almost 1:1 match is found. However, Gutiérrez-Moreno and his colleagues (1999) [15] distance error is ~ 12 times that of Gaia DR2. Further, Ground-based parallaxes for NGC 6853 and SH 2- 216 were obtained by Pottasch (1996) [1]. Both PNe distances are compatible with those of Gaia DR2 but their errors greatly reduced in Gaia DR2. Using the astrometry of US Naval Observatory, Harris and his colleagues (2007) [5] provided ground-based parallaxes for 16 PNe. All these PNe but one are given in Gaia DR2. The PNe trigonometric distances of Harris and his colleagues (2007) [5] show somewhat smaller values, except few objects, than Gaia DR2 with an average ratio of 0.97. The distances amusements of Harris and his colleagues (2007) [5] display high uncertainties compared to those of Gaia DR2. The overall distance error of Gaia DR2 is ~ 3% while it is ~ 17% for that of Harris and his colleagues (2007) [5]. Later, Four PNe from Harris and his colleagues (2007) [5] list have been observed for 3.8 years by Hubble Space Telescope (HST; [16]). The four objects are identified in Gaia DR2. The HST provides slightly higher distances than Gaia DR2 with an average ratio of 1.1. However, the uncertainties in the HST measurements are marginally higher than that of Gaia DR2. Figure 1 displays the trigonometric distance of Gaia DR2 versus the prior trigonometric measurements. To summarize the study given here, the Gaia DR2 distances show nearly perfect agreement with the previous trigonometric distances. The correlation coefficients between distances of Gaia DR2 and the others range from 0.92 - 1.0

5. Comparison between Gaia DR2 trigonometric distances and other individual distances methods

Figure 2: Comparison between the Gaia DR2 trigonometric distances and distances derived from both the extinction method (left panel) and expansion method (right panel). The diagonal solid line as defined in Figure 1.

The last few decades several individual methods, besides the trigonometric method, have been used to determine

the PNe distances (see section 1). For a description of these various methods, their assumption, uncertainties and limitation, the reader is referred to [4]. In fact, the trigonometric is the only direct method for distance determination. Other methods have to be applied under particular assumptions. Therefore, it is useful to compare the different individual methods with the trigonometric method in order to investigate the consistency between these methods. Extracting the PNe distances from different individual methods is provided in [17]. In that paper, the authors noted variation in distance values of a certain PN among different references. The variation was found to be caused by different authors where the same method was used. To overcome this problematic issue, the authors derived a reliable weighted mean distance for each object. A comparison between the extinction and trigonometric methods, for 23 common PNe, is presented in Fig. 2 (left panel), where the diagonal solid line represents the one-to-one correlation. In general, the comparison reveals a good correlation between both methods, where the correlation coefficient (r) is 0.84. The mean and median distance ratios $\langle D_{Ext}/D_{Tri} \rangle$ are 1.08 and 0.95, respectively. Although the majority of the objects have comparable distances within the error range, there are few outliers such as PN A66 8 and NGC 7354. Figure 2 (right panel) displays a comparison between the expansion and trigonometric methods for 13 common objects. The figure declares a well correlation between both methods, where the correlation coefficient (r) is 0.87. The mean and median distance ratios $\langle D_{Exp} / D_{Tri} \rangle$ are 1.0 and 0.98, respectively. In general, the expansion distances are much closer to

the trigonometric distances than the extinction distances, but there are also few outliers, e.g., NGC 6578 and NGC 3242.

Figure 3: Comparison between the Gaia DR2 trigonometric distances and distances derived from the kinematic method (left panel) and photoionization method (right panel). The diagonal solid line as defined in Figure 1.

In Fig. 3 (left panel), we compare the distances derived from the kinematic and trigonometric methods. The figure illustrates inconsistent distances for seven of eight objects although the correlation coefficient is still good (r = 0.76). The mean (1.13) and median (1.08) ratios $\langle {}^{D_{Kin}}/{}_{D_{Tri}} \rangle$ between both methods give slightly higher kinematic distances compared to trigonometric distances. As in Fig. 2, there are few outliers, e.g., Mz1, NGC 6369 and IC 1747. This result should take with caution, because the number of objects applied for the comparison is statistically unreliable. Figure 3 (right panel) shows photoionization distances versus

trigonometric distances. The figure shows distance inconsistency for all objects except one. The result of the mean (1.08) and median (1.05) distance ratios $\langle D_{Pho}/D_{Tri} \rangle$ reveals that the photoionization method gives slightly higher distances compared to the trigonometric method. An example for inconsistent distance between both methods, NGC 40 has a trigonometric distance twice the photoionization distance. As in Fig. 3 (left panel), this result should take with caution due to the relatively small number of objects used in this comparison.

Figure 4: Comparison between the Gaia DR2 trigonometric distances and distances derived from the gravity method (left panel) and spectroscopic method (right panel). The diagonal solid line as defined in Figure 1.

A comparison between the gravity and trigonometric distances for 37 common objects is illustrated in Fig. 4 (left panel). The correlation coefficient is 0.87, which reflect a good correlation between both methods. Most of the objects have higher gravity distances comparing to trigonometric distances. This result is quite clear from the derived mean (1.3) and median (1.23) values $\langle {}^{D}{}_{Gra}/{}_{D_{Tri}} \rangle$. This comparison represents the best one in this study because it is based on a statistically large sample. The main result declares that the gravity method gives overestimate of the PN distances by at least 30% and 23% in case we adopt the mean and median ratios, respectively. Based on a sample of 15 objects, Ali and his colleagues (2015) [17] estimated mean and median ratios of 1.22 and 1.23, respectively, which analogy the present result. Further, but also based on a small statistical sample, Jacoby and Van de Steene (1995) [18] show the gravity method overestimate the PN distances by ~ 40%. Furthermore, Harris and his colleagues (2007) [5] found that the gravity method gives a very high distance for few objects, e.g. Hen 2-108 (larger than 150%) and NGC 6563 (larger than 300%). Figure 4 (right panel) displays a comparison between the spectroscopic and trigonometric methods. Despite the small statistical sample used here, the spectroscopic method shows well agreement with trigonometric method. The mean and median distance ratios (${}^{D_{Spe}}/{}_{D_{Tri}}$), and correlation coefficient are 1.0, 1.0, and 0.9, respectively. All

objects, except PN A66 30, have consistent distances within the error range. The peculiar case of PN A66 30 can be interpreted due to the false binarity of the object or there is another companion for the PN primary central star. Table 3 summarizes the mean ratio (column 3), median ratio (column 4), and correlation coefficient

(column 5) between the trigonometric and other individual distance methods. Further, it contains in column 2 the number of objects used in such comparisons.

Methods	# Objects	Mean	Median	Correlation coefficient
Extinction	23	1.08	0.95	0.84
Expansion	13	1.00	0.98	0.87
Kinematic	8	1.13	1.08	0.76
Photoionization Model	11	1.08	1.05	0.93
Gravity	37	1.30	1.23	0.87
Spectroscopic	11	1.00	1.01	0.96

Table 3: The ratio between Gaia DR2 trigonometric distance and other individual distance methods

It is essential to note that, the trigonometric method is useful for deducing the distances to nearby objects. Most parallax measurements are available for PNe with distance less than 4000 pc. The parallax measurements of distant PNe are limited and their uncertainties are worse than nearby objects. Fig. 4 (right panel) shows the trigonometric distances for the two distant nebulae Me $1-1(\sim 5000 \text{ pc})$ and PN A66 14 (~6000 \text{pc}).

6. Conclusion

The parallax measurements were known for a small number of PNe prior to the Gaia mission. Therefore, the comparison between the trigonometric and other individual methods was statistically unreliable (see [17]). The extracted PNe parallax measurements from Gaia DR2 provide us to do such comparisons with relatively reliable number of objects. The main results achieved in the present article are summarized as follows:

- Starting by searching the literatures for confirmed planetary nebulae, known up to this time, followed by discussing the method used for selecting PNe central stars from Gaia DR, we were able to identify 2170 Gaia DR2 sources classified as PNe, from which we ignored all sources with negative parallax values, no parallax at all, and unmeasured colours. To achieve the best results for studies given in Sections 3 and 4, we restricted our analysis to the true CSs with parallax uncertainties less than 25%. Finally, a sample of 200 PNe with accurate parallax measurements was selected.
- As a result of searching Gaia DR2 for true CSs, we found that the number of CSs in Gaia DR2 increases with increasing the size of searching circle, which reflect the large fraction of CSs that lie off nebular centres.
- We noticed that most of the true red CSs in Gaia DR2 (BP RP> 0.0) are associated with high flux excess factors, which frequently refer to inaccuracy in determining the blue and red photometric magnitudes.
- 4. Gaia DR2 trigonometric distances show a nearly perfect match to the previous ground-based trigonometric distances especially those obtained by Gutiérrez-Moreno and his colleagues (1999) [15] and Pottasch (1996) [1]. However, the ground-based trigonometric distances obtained by Harris and his colleagues (2007) [5] show somewhat smaller values with an average ratio of 0.97. In general, the

ground-based distances errors are much higher than those of Gaia DR2.

- 5. In reverse to the ground-based trigonometric distances, the HST distances was found to be a bit longer than that of Gaia DR2 with an average ratio of 1.1. The uncertainties in the HST [16] measurements are marginally higher than that of Gaia DR2.
- 6. To study the impact of using different individual methods of PNe distances determination, we discussed the consistency between the new trigonometric distance of Gaia DR2 with other individual distances methods in literature. Variation between these values can be observed. The results declare that the spectroscopic method is the best subsequent method for determining the PN distance after the trigonometric method. Applying other methods should take with care especially the gravity method which overestimate the Gaia DR2 trigonometric distance by an average of 30 %.

7. Recommendation

The upcoming catalogue of Gaia mission "Gaia DR3" will offer much more parallax measurements especially for more faint stars. Therefore, we expect to enhance the comparisons given here between the trigonometric and spectroscopic, expansion, extinction, photoionization, gravity and kinematic methods.

Acknowledgements

The author thanks Prof. Alaa Ali for his support and suggestion. We also thank Dr.Saleh Qutub and Dr.Aied Alruhaili for reading the first version of the manuscript and providing helpful comments which improved the paper. This work has made use of the data from the European Space Agency (ESA) mission *Gaia* (https://www.cosmos.esa.int/gaia), processed by the *Gaia* Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). This research further has made use of the following: the HASH PN database, the Simbad database and the Aladin applet.

References

- [1]. S. R. Pottasch. "Local space density and formation rate of planetary nebulae." Astronomy and Astrophysics, vol. 307, pp. 561-578. Mar. 1996.
- [2]. Walter J. Maciel and Roberto D. D. Costa. "PN and galactic chemical evolution." Symposium-International Astronomical Union, vol. 209, pp. 551-558. Cambridge University Press, 2003.
- [3]. I. S. Shklovsky "A new scale of distances of planetary nebulae." Astron. Zh., vol. 33, pp. 222-235. 1956.
- [4]. D. J. Frew, Q. A. Parker, I. S. Bojičić. "The Hα surface brightness-radius relation: a robust statistical distance indicator for planetary nebulae." Monthly Notices of the Royal Astronomical Society, vol. 455, pp. 1459-88. Jan 2016
- [5]. H. C. Harris, C. C. Dahn, B. Canzian, H. H. Guetter, S. K. Leggett, S. E. Levine, et al. "Trigonometric parallaxes of central stars of planetary nebulae." The Astronomical Journal, vol. 113, pp. 631-638, Feb. 2007.
- [6]. A. Acker, A. Fresneau, S. R. Pottasch, G. Jasniewicz. "A sample of planetary nebulae observed by HIPPARCOS." Astronomy and Astrophysics, vol. 337, pp. 253-260. Sep. 1998.

- [7]. S. R. Pottasch, and A. Acker. "A comparison of Hipparcos parallaxes with planetary nebulae spectroscopic distances." Astronomy and Astrophysics, vol. 329, pp. L5-L8. Jan. 1998.
- [8]. W. A. Weidmann, and R. Gamen. "Central stars of planetary nebulae: New spectral classifications and catalogue." Astronomy & Astrophysics, vol. 526, A6. Feb. 2011.
- [9]. W. A. Weidmann, and R. Gamen. "Central stars of planetary nebulae-II. New OB-type and emissionline stars." Astronomy & Astrophysics, vol. 531, A172. Jul. 2011.
- [10]. W. A. Weidmann, R. H. Méndez, and R. Gamen. "Improved spectral descriptions of planetary nebulae central stars." Astronomy & Astrophysics, vol. 579, A86. Jul. 2015.
- [11]. W. A. Weidmann, R. Gamen, D. Mast, C. Fariña, G. Gimeno, E.O. Schmidt, et al. "Towards an improvement in the spectral description of central stars of planetary nebulae." Astronomy & Astrophysics vol. 614, A135. Jun. 2018.
- [12]. K. DePew, Q. A. Parker, B. Miszalski, O. De Marco, D. J. Frew, A. Acker, et al. "Newly discovered Wolf–Rayet and weak emission-line central stars of planetary nebulae." Monthly Notices of the Royal Astronomical Society, vol. 414, pp. 2812-2827. Jul. 2011.
- [13]. Quentin A. Parker, Ivan S. Bojicic, and David J. Frew. "HASH: the Hong Kong/AAO/Strasbourg Hα planetary nebula database." J. Phys. Conf. Ser. Vol. 728, p. 032008. Jul. 2016.
- [14]. R. Tylenda, A. Acker, B. Stenholm, F. Gleizes, B. Raytchev. "The B and V magnitudes of the central stars of planetary nebulae." Astronomy and Astrophysics Supplement Series, vol. 89, pp. 77-90. Jul. 1991.
- [15]. A. Gutiérrez- Moreno, C. Anguita, P. Loyola, and H. Moreno. "Trigonometric distances of planetary nebulae." Publications of the Astronomical Society of the Pacific, vol. 111, pp. 1163-1168. Sep. 1999.
- [16]. G. Benedict, B. E. McArthur, R. Napiwotzki, T. E. Harrison, H. C. Harris, E. Nelan, et al. "Astrometry with the Hubble Space Telescope: Trigonometric Parallaxes of Planetary Nebula Nuclei NGC 6853, NGC 7293, Abell 31, and DeHt 5." The Astronomical Journal, vol. 138.6, pp. 1969-1984. Dec. (2009).
- [17]. Alaa Ali, H. A. Ismail, and Z. Alsolami. "A new statistical distance scale for planetary nebulae." Astrophysics and Space Science, vol. 357, pp. 21. Apr. 2015.
- [18]. George H. Jacoby, and Griet van de Steene. "Identification of an old planetary nebula around the PG 1159 star: PG 1520+ 525." The Astronomical Journal, vol. 110, pp. 1285, Sep. 1995.

APPENDIX

The final PNe sample. The name of the nebula, PNG number, Gaia number, right ascension, declination, galactic longitude, galactic latitude, spectral type of central star, reference of central star spectral type, parallax (millisecond), error in parallax (millisecond), distance (kpc), error in distance (kpc), G nebular magnitude, and blue-red central star colour are given in columns 2-16 respectively.

Table 4

No	PN Name	PN G	Gaia DR2	RA	Dec	L	В	Spectral	Ref.	P	σΡ	D	σ_D	G.	Bp-
				deg	deg	deg	deg	Classification		mas	mas	(kpc	(kpc	mag.	rp
))		
1	[D75b] Em* 21-	093.9-00.1	217165276900570956	322.49	51.06	93.987	-0.118	O7(f)-[WC11]	1	0.25	0.01	4.01	0.29	13.7	1.76
	021		8	4	7						8	4	8	5	
2	[FMP2006b] Fr	313 8+10	609025651326489881	210.17	-	313.89	10.35			0.50	0.06	1.98	0.26	16.0	-
-	2-8	3	6	4	51.04	9	4			0.20	8	1	5	9	0.07
	2-0	5	0	-	1		-				0	1	5		0.07
2	DMD 10720	221.1.02	202000556002006000	114.06	1	001.10	2.005	DI	1	0.47	0.05	0.11	0.24	15.6	
3	BMP J0/39-	231.1+03.	303000556082886809	114.96	-	231.18	3.905	Blue	1	0.47	0.05	2.11	0.24	15.6	-
	1418	9	6	1	14.30	9					4	4	0	2	0.16
					7										
4	BMP J1759-	357.7-04.8	404251344776285888	269.93	-	357.72	-4.846	Blue	1	1.19	0.19	0.83	0.13	18.1	-
	3321		0	8	33.35	4					8	8	9	9	0.01
					4										
5	EGB 6	221.6+46.	615161091995252864	148.24	13.74	221.58	46.36	hgO(H)	1	0.73	0.16	1.36	0.31	15.9	-
		4		6	3	9	4				7	3	0	7	0.51
6	ESO 217-11	293.6+10.	536931114128171507	178.27	-	293.61	10.96	H-rich	1	0.68	0.17	1.46	0.36	18.2	-
		9	2	8	50.84	4	4				1	9	8	8	0.29
					9										
7	ESO 40-11	305.6-13.1	579066330291735987	203.56	-	305.61	-			0.41	0.06	2.45	0.35	15.7	-
			2	0	75.77	7	13.12				0	3	9	2	0.39
					5		7								
8	FP J0904-4023	263.1+04.	562067595769773964	136.01	-	263.16	4.325	Blue	1	0.92	0.10	1.09	0.12	17.7	-
Ŭ		3	8	0	40.37	4			-	0.72	5	2	5	1	0.18
		5	U	U	+0.57	+					5	2	5	+	0.10

					2										
9	FP J0905-3033	255.8+10.	563524008872420249	136.27	-	255.86	10.96			1.34	0.07	0.74	0.04	16.4	-
		9	6	2	30.55	1	7				3	5	1	6	0.48
					3										
10	FP J0911-4051	264.5+05.	542863432907629094	137.94	-	264.52	5.075	Blue	1	0.95	0.21	1.05	0.24	18.9	-
		0	4	0	40.86	1					7	1	0	5	0.27
					6										
11	FP J1824-0319	026.9+04.	426967812054434214	276.17	-3.333	26.900	4.415			4.89	0.07	0.20	0.00	14.8	-
		4	4	0							3	5	3	3	0.51
12	Hen 2-105	308.6-12.2	579643722073178828	213.85	-	308.65	-	OB, early O	1, 2	0.28	0.04	3.61	0.64	14.6	-
			8	3	74.21	7	12.28				9	3	5	1	0.26
					3		2								
13	Hen 2-108	316.1+08.	589735263131665126	214.53	-	316.17	8.451	wels, Of(H)	1, 3	0.36	0.03	2.78	0.29	12.6	0.23
		4	4	7	52.17	0					9	7	9	8	
					8										
14	Hen 2-119	317.1-05.7	587326428576531123	227.67	-	317.13	-5.714			0.65	0.13	1.53	0.31	17.8	0.35
			2	0	64.67	8					5	2	6	3	
					4										
15	Hen 2-178	344.2+04.	597100108128874380	250.64	-	344.27	4.751			0.32	0.04	3.10	0.45	13.7	2.41
		7	8	0	38.91	5					7	3	6	3	
					1										
16	Hen 2-36	279.6-03.1	530604304322126156	145.85	-	279.60	-3.186	A2 III??	1, 2	0.22	0.02	4.56	0.58	11.1	0.93
			8	7	57.28	8					8	9	8	9	
					2										
17	Hen 2-438	064.7+05.	203274476923415001	293.68	30.51	64.785	5.019	[WC9]	1	0.59	0.06	1.70	0.18	10.2	0.47

		0	6	8	6						3	6	4	5	
18	Hen 3-172	249.0+06.	564649905343394944	127.92	-	249.07	6.969			0.37	0.02	2.69	0.19	11.6	0.88
		9	0	9	27.75	8					7	3	5	8	
					9										
19	IC 1295	025.4-04.7	420364949242142681	283.65	-8.827	25.418	-4.714	hgO(H)	1	0.69	0.08	1.45	0.17	16.8	-
			6	5							4	4	8	5	0.23
20	IC 1747	130.2+01.	511904404556131200	29.399	63.32	130.27	1.397	[WO4]	1	0.31	0.05	3.24	0.53	15.7	0.28
		3			2	7					1	5	3	0	
21	IC 2448	285.7-14.9	522277238905017984	136.77	-	285.79	-	O(H), O(H)3	1,4	0.29	0.04	3.46	0.54	14.0	-
			0	6	69.94	9	14.95	III-V			5	9	6	1	0.62
					2		2								
22	IC 289	138.8+02.	463228376251556224	47.580	61.31	138.81	2.805	O(H)	1	0.63	0.06	1.59	0.15	16.4	0.60
		8			7	7					0	2	3	0	
23	IC 3568	123.6+34.	172013869701534502	188.27	82.56	123.65	34.53	O3(H)	1	0.37	0.05	2.72	0.42	12.7	-
		5	4	9	4	1	9				6	8	0	8	0.35
24	IC 418	215.2-24.2	298578911302616358	81.868	-	215.21	-	Of(H)	1	0.65	0.05	1.55	0.13	10.0	0.07
			4		12.69	2	24.28				4	0	0	5	
					7		4								
25	IC 4593	025.3+40.	445721824547945574	242.93	12.07	25.334	40.83	07	1	0.38	0.07	2.62	0.54	11.1	-
		8	4	6	1		6				9	9	9	7	0.33
26	IC 4637	345.4+00.	596676988132006220	256.29	-	345.47	0.140	O(H)	1	0.75	0.04	1.32	0.07	12.5	0.61
		1	8	4	40.88	9					3	6	5	1	
					6										
27	IC 5148	002.7-52.4	657422521786306905	329.89	-	2.711	-	hgO, (H)O?	1, 2	0.78	0.08	1.27	0.14	16.1	-
			6	6	39.38		52.44				7	9	2	0	0.64

					6		0								
28	IC 972	326.7+42.	629150919746809267	211.10	-	326.76	42.24			0.50	0.10	1.98	0.40	17.2	0.89
		2	2	8	17.22	1	1				3	9	9	7	
					8										
29	Jacoby 1	085.4+52.	159594144125063667	230.44	52.36	85.366	52.34	PG 1159	1	1.33	0.06	0.74	0.03	15.5	-
		3	2	4	8		9				2	9	5	6	0.66
30	LTNF 1	144.8+65.	786919754746647424	179.43	48.93	144.81	65.84	M3 V	1	0.60	0.03	1.65	0.09	15.1	0.42
		8		7	8	1	6				3	9	2	9	
31	MPA J1508-	316.7-05.8	587288451189515276	227.02	-	316.77	-5.797	Blue	1	0.14	0.02	6.95	1.39	13.4	0.72
	6455		8	7	64.93	1					9	2	5	7	
					0										
32	MPA J1759-	000.5-03.1	405623930851198732	269.85	-	0.507	-3.188			3.46	0.51	0.28	0.04	19.0	1.70
	3007	а	8	6	30.12						1	9	3	8	
					1										
33	MPA J1858-	020.7-08.0	410145311207814643	284.58	-	20.706	-8.054	Blue	1	0.77	0.12	1.29	0.20	16.3	0.08
	1430		2	0	14.50						5	3	8	9	
					7										
34	MWP 1	080.3-10.4	185529517173215808	319.28	34.20	80.356	-	PG 1159	1	1.99	0.05	0.50	0.01	13.0	-
			0	4	8		10.40				0	2	3	5	0.59
							9								
35	NAME PN Alv	079.8-10.2	186692236545236876	318.77	33.97	79.889	-			0.73	0.16	1.37	0.30	18.3	-
	1		8	8	2		10.26				2	3	6	2	0.44
							4								
36	NAME PN	075.9+11.	212589566920418483	292.78	43.41	75.999	11.65	O(H)3 Vz	4	0.65	0.03	1.54	0.09	13.5	-
	AMU 1	6	2	7	6		0				9	5	3	9	0.46

37	NAME PN Pa 9	189.1-07.7	339740603121294694	84.492	17.10	189.18	-7.694			0.92	0.21	1.08	0.26	18.1	1.99
			4		9	0					9	9	0	2	
38	NAME PN	003.3+66.	122715180234096883	214.09	13.87	3.392	66.16			1.37	0.33	0.73	0.18	18.5	-
	SkAc 1	1	2	1	3		5				7	2	0	1	0.36
39	NeVe 3-2	326.4+07.	590256493492466598	229.93	-	326.41	6.993	O(H)4 Vz	4	0.26	0.04	3.86	0.64	15.2	0.18
		0	4	3	48.99	5					3	9	2	8	
					9										
40	NGC 1360	220.3-53.9	508489668894579123	53.311	-	220.36	-	O(H)	1	2.55	0.08	0.39	0.01	11.2	-
			2		25.87	3	53.93				2	2	3	6	0.64
					2		4								
41	NGC 1501	144.1+06.	473712872456844544	61.747	60.92	144.56	6.551	[WO4]	1	0.57	0.02	1.76	0.07	14.2	0.57
		1			1	0					5	3	9	4	
42	NGC 1514	165.5-15.2	168937010969340160	62.321	30.77	165.53	-	sdO + A0 III	1	2.14	0.03	0.46	0.00	9.27	0.82
					6	4	15.28				9	6	8		
							8								
43	NGC 1535	206.4-40.5	318915296263316505	63.566	-	206.47	-	O5	1	0.82	0.06	1.21	0.09	12.0	-
			6		12.73	7	40.56				3	5	3	7	0.48
					9		5								
44	NGC 2022	196.6-10.9	333614041438097766	85.526	9.086	196.68	-	O(H)	1	0.53	0.07	1.88	0.28	15.6	-
			4			5	10.94				9	2	0	6	0.27
							2								
45	NGC 2346	215.6+03.	310944465745630028	107.34	-0.807	215.69	3.621	A5 V	1	0.69	0.04	1.45	0.09	11.1	0.38
		6	8	4		9					3	7	2	9	
46	NGC 2371	189.1+19.	885587110718845568	111.39	29.49	189.15	19.84	[WO1]	1	0.53	0.06	1.87	0.23	14.7	-
		8		5	1	6	3				6	9	2	9	0.52

47	NGC 2392	197.8+17.	865037169677723904	112.29	20.91	197.87	17.40	O6f	1	0.50	0.04	1.99	0.19	10.6	-
		3		5	2	8	0				9	8	7	7	0.30
48	NGC 2438	231.8+04.	302921429041231872	115.46	-	231.80	4.117	M3 V	1	2.37	0.22	0.42	0.04	17.0	-
		1	0	0	14.73	1					3	2	0	6	0.17
					5										
49	NGC 246	118.8-74.7	237659291026535436	11.764	-	118.86	-	PG 1159 (lg	1	1.95	0.10	0.51	0.02	11.8	-
			8		11.87	3	74.70	E)			1	2	6	1	0.65
					2		9								
50	NGC 2610	239.6+13.	570992895152175116	128.34	-	239.62	13.94	WD?	1	0.42	0.07	2.38	0.42	15.9	-
		9	8	8	16.14	9	8				5	4	8	0	0.55
					9										
51	NGC 3132	272.1+12.	542021973222846118	151.75	-	272.11	12.39	A2 V	1	1.16	0.05	0.86	0.03	10.0	0.16
		3	4	7	40.43	4	7				0	5	8	3	
					6										
52	NGC 3242	261.0+32.	566887490532584345	156.19	-	261.05	32.05	O(H)	1	0.68	0.08	1.46	0.19	12.2	-
		0	6	2	18.64	1	0				8	6	0	0	0.56
					2										
53	NGC 3587	148.4+57.	843950873117830528	168.69	55.01	148.49	57.05	hgO(H)	1	1.14	0.06	0.87	0.05	15.7	-
		0		9	9	0	0				6	9	1	3	0.63
54	NGC 3699	292.6+01.	533613368717059904	171.99	-	292.65	1.238			0.65	0.09	1.54	0.23	17.6	-
		2	0	1	59.95	6					7	3	2	0	0.17
					8										
55	NGC 40	120.0+09.	537481007814722688	3.254	72.52	120.01	9.868	[WC8]	1	0.50	0.02	1.98	0.11	11.4	0.33
		8			2	6					9	4	4	5	
56	NGC 4361	294.1+43.	351961406857806156	186.12	-	294.11	43.62	06	1	0.97	0.07	1.02	0.08	13.1	-

		6	8	8	18.78	4	5				5	7	0	0	0.60
					5										
57	NGC 5189	307.2-03.4	586370286827542438	203.38	-	307.20	-3.452	[WO1]	1	0.59	0.03	1.68	0.08	14.4	-
			4	7	65.97	6					1	2	9	4	0.02
					4										
58	NGC 5882	327.8+10.	600001914729939993	229.20	-	327.81	10.08	Of(H)	1	0.51	0.06	1.97	0.25	13.0	-
		0	6	8	45.65	8	0				7	2	9	8	0.17
					0										
59	NGC 6026	341.6+13.	601116916158390348	240.33	-	341.60	13.70	OB, O7	1,2	0.31	0.03	3.22	0.40	13.1	0.04
		7	8	8	34.54	5	4				9	7	7	4	
					3										
60	NGC 6058	064.6+48.	138019904921999078	241.11	40.68	64.668	48.30	09	1	0.32	0.03	3.12	0.37	13.7	-
		2	4	1	3		0				8	5	5	4	0.60
61	NGC 6153	341.8+05.	601703457077581798	247.87	-	341.84	5.438	wels	1	0.73	0.06	1.36	0.12	15.1	0.64
		4	4	7	40.25	5					5	2	0	8	
					4										
62	NGC 6337	349.3-01.1	597257705506263705	260.56	-	349.35	-1.115	emission-line,	1, 2,	0.54	0.06	1.84	0.20	15.6	0.33
			6	5	38.48	1		wels, not	3		1	4	7	4	
					4			classif							
63	NGC 6369	002.4+05.	411136847792105036	262.33	-	2.432	5.847	[WO3]	1	0.88	0.06	1.13	0.08	15.6	1.60
		8	8	5	23.76						2	9	1	2	
					0										
64	NGC 6543	096.4+29.	163332524891515417	269.63	66.63	96.468	29.95	wels, Of-	1, 3	0.62	0.07	1.62	0.18	11.1	-
		9	6	9	3		4	WR(H)			1	6	7	9	0.39
65	NGC 6563	358.5-07.3	403960053654439539	273.01	-	358.50	-7.337			1.07	0.18	0.93	0.16	17.1	-

			2	1	33.86	4					9	2	4	7	0.40
					9										
66	NGC 6578	010.8-01.8	409435449320570739	274.06	-	10.818	-1.827	wels	1	0.54	0.06	1.84	0.23	15.2	0.69
			2	9	20.45						9	9	5	3	
					1										
67	NGC 6629	009.4-05.5	408951715744218700	276.42	-	9.407	-5.049	[WC4]?	1	0.45	0.05	2.19	0.24	12.6	0.45
			8	7	23.20						1	8	4	8	
					3										
68	NGC 6720	063.1+13.	209048661878653478	283.39	33.02	63.170	13.97	DA(O?)	1	1.27	0.05	0.78	0.03	15.6	-
		9	4	6	9		8				9	7	7	1	0.57
69	NGC 6772	033.1-06.3	426103846743241177	288.65	-2.707	33.159	-6.387			0.92	0.20	1.08	0.24	18.4	0.42
			6	1							6	5	3	1	
70	NGC 6781	041.8-02.9	429412307723016473	289.61	6.539	41.841	-2.987			2.04	0.08	0.48	0.02	16.7	0.35
			6	7							9	9	1	5	
71	NGC 6804	045.7-04.5	429636244314985792	292.89	9.225	45.749	-4.589	09	1	1.14	0.06	0.87	0.05	14.0	0.49
			0	6							5	8	0	0	
72	NGC 6826	083.5+12.	213535239691523980	296.20	50.52	83.562	12.79	O3f(H)	1	0.63	0.04	1.57	0.11	10.5	-
		7	8	1	5		2				8	5	8	8	0.34
73	NGC 6842	065.9+00.	202877731899261107	298.76	29.28	65.914	0.598			0.48	0.04	2.09	0.20	16.1	0.36
		5	2	0	8						6	9	2	0	
74	NGC 6853	060.8-03.6	182725662449330009	299.90	22.72	60.836	-3.696	DAO	1	2.66	0.04	0.37	0.00	14.0	-
			6	2	1						4	6	6	3	0.59
75	NGC 6879	057.2-08.9	180955246005558860	302.61	16.92	57.228	-8.918	wels, O3f(He)	1, 3	0.75	0.10	1.34	0.18	14.2	-
			8	1	3						3	1	5	1	0.11
76	NGC 6891	054.1-12.1	180323490676269273	303.78	12.70	54.197	-	wels, O3 Ib	1, 3	0.41	0.05	2.45	0.30	12.2	-

			6	7	4		12.11	(f*)			1	5	9	6	0.26
							2								
77	NGC 6894	069.4-02.6	205368362814077452	304.10	30.56	69.476	-2.622	WD?	1	0.84	0.13	1.19	0.18	18.1	0.41
			8	0	5						1	2	6	7	
78	NGC 6905	061.4-09.5	181654766041681088	305.59	20.10	61.491	-9.571	[WO2]	1	0.40	0.04	2.50	0.28	14.5	-
			0	6	4						6	3	6	5	0.28
79	NGC 7009	037.7-34.5	688933803483742592	316.04	-	37.762	-	O(H)	1	0.87	0.11	1.15	0.15	12.6	-
			0	5	11.36		34.57				6	4	5	0	0.54
					3		1								
80	NGC 7048	088.7-01.6	216419293052571724	318.56	46.28	88.780	-1.681			1.02	0.25	0.97	0.24	18.9	0.09
			8	3	8						3	8	2	0	
81	NGC 7094	066.7-28.2	177005886567451289	324.22	12.78	66.778	-	hybrid	1	0.61	0.05	1.62	0.15	13.5	-
			6	1	9		28.20				9	6	5	3	0.45
							2								
82	NGC 7293	036.1-57.1	662887420564208422	337.41	-	36.161	-	DAO	1	4.98	0.07	0.20	0.00	13.4	-
			4	1	20.83		57.11				6	1	3	8	0.63
					7		8								
83	NGC 7354	107.8+02.	220108075534978956	340.08	61.28	107.84	2.315	cont.	1	0.45	0.08	2.20	0.41	17.1	0.97
		3	8	3	6	4					5	1	4	3	
84	NGC 7662	106.5-17.6	192481828837926873	351.47	42.53	106.55	-	UV emission	1	0.51	0.07	1.97	0.29	13.6	-
			6	4	5	9	17.60	lines			5	9	2	5	0.52
							1								
85	Patchick 5	076.3+14.	212704080626400294	289.87	44.76	76.325	14.11	O(He)	5	0.41	0.05	2.44	0.31	15.6	-
		1	4	7	2		6				3	3	4	9	0.41
86	PFP 1	222.1+03.	305809420026463731	110.57	-6.363	222.12	3.910	pre-WD?	1	1.65	0.08	0.60	0.03	15.8	-

		9	2	4		9					3	5	1	4	0.65
87	PHL 932	125.9-47.0	277835535240718412	14.986	15.73	125.93	-	hgO(H)	1	3.22	0.07	0.31	0.00	12.0	-
			8		7	9	47.08				6	1	7	6	0.47
							5								
88	PHR	216.0+07.	311080365382720128	110.95	0.609	216.09	7.477	[WR]	1	0.25	0.03	4.00	0.56	13.8	-
	J0723+0036	4	0	2		6					5	5	8	5	0.04
89	PHR J0740-	237.0+00.	571538733526252864	115.09	-	237.02	0.761			0.72	0.14	1.37	0.27	18.1	-
	2055	7	0	5	20.93	7					2	9	1	3	0.34
					2										
90	PHR J1134-	291.3+08.	534559745861461440	173.66	-	291.31	8.406	[WO4]-	1	0.21	0.03	4.69	0.80	13.0	0.17
	5243	4	0	1	52.72	8		[WC4]			6	9	1	0	
					6										
91	PHR J1418-	316.3+08.	589743877117798643	214.60	-	316.35	8.846			0.77	0.10	1.29	0.17	17.2	-
	5144	8	2	7	51.74	7					6	8	9	7	0.22
					4										
92	PHR J1804-	004.0-02.6	406331122989333760	271.24	-	4.044	-2.597			1.15	0.11	0.86	0.08	16.5	1.53
	2645		0	8	26.75						8	8	9	1	
					4										
93	PN A66 14	197.8-03.3	333040426651863641	92.786	11.77	197.84	-3.400	B5 III-V, B8-	1, 2	0.19	0.03	5.13	0.94	15.0	0.77
			6		9	9		9			6	5	9	9	
94	PN A66 20	214.9+07.	313571027225369958	110.74	1.759	214.96	7.815	O(H)	1	0.61	0.08	1.65	0.22	16.4	-
		8	4	0		7					1	0	0	5	0.44
95	PN A66 21	205.1+14.	316354650505364505	112.26	13.24	205.13	14.24	PG 1159 (E)	1	1.86	0.08	0.53	0.02	15.9	-
		2	6	1	7	9	1				1	8	3	6	0.59
96	PN A66 24	217.1+14.	308899102675746880	117.90	3.006	217.17	14.75			1.43	0.12	0.70	0.06	17.4	-

		7	0	6		5	2				9	1	3	1	0.61
97	PN A66 28	158.8+37.	104041721140700198	130.39	58.23	158.80	37.17			2.58	0.09	0.38	0.01	16.5	-
		1	4	8	0	2	9				4	8	4	2	0.47
98	PN A66 29	244.5+12.	570341526854329574	130.07	-	244.60	12.56			0.85	0.17	1.17	0.23	18.2	-
		5	4	9	20.91	3	4				2	8	8	7	0.58
					0										
99	PN A66 3	131.5+02.	515007024509005440	33.028	64.15	131.58	2.643			0.34	0.08	2.92	0.71	17.1	1.50
		6			1	7					4	0	6	9	
10	PN A66 30	208.5+33.	660071056749861888	131.72	17.88	208.55	33.28	[WC]-PG1159	1	0.36	0.05	2.76	0.38	14.3	-
0		2		3	0	7	9				1	8	9	6	0.24
10	PN A66 31	219.1+31.	597324024095840512	133.55	8.898	219.13	31.29	hgO(H)	1	1.96	0.08	0.51	0.02	15.4	-
1		2		5		3	1				8	1	3	8	0.55
10	PN A66 33	238.0+34.	382704552552291212	144.78	-2.808	238.02	34.86	O(H), DAO	1,4	1.04	0.08	0.95	0.07	15.9	-
2		8	8	8		2	4				1	9	5	6	0.37
10	PN A66 34	248.7+29.	569053473034102540	146.39	-	248.70	29.54	hgO(H)	1	0.86	0.10	1.16	0.13	16.4	-
3		5	8	7	13.17	8	0				0	1	5	2	0.60
					1										
10	PN A66 35	303.6+40.	349914920224756953	193.38	-	303.56	39.99	? + G8 IV	1	7.99	0.13	0.12	0.00	9.35	1.16
4		0	6	6	22.87	6	6				8	5	2		
					3										
10	PN A66 36	318.4+41.	629207465567987468	205.17	-	318.46	41.50	O(H)	1	2.29	0.08	0.43	0.01	11.5	-
5		4	8	2	19.88	3	0				3	7	6	1	0.50
					2										
10	PN A66 39	047.0+42.	130557351141585753	246.89	27.90	47.052	42.48	hgO(H)	1	0.99	0.05	1.01	0.05	15.5	-
6		4	6	0	9		3				5	1	6	9	0.53

10	PN A66 43	036.0+17.	448895393063114316	268.38	10.62	36.062	17.62	hybrid	1	0.43	0.06	2.31	0.32	14.6	-
7		6	8	4	3		0				1	9	7	8	0.28
10	PN A66 46	055.4+16.	458538181764370252	277.82	26.93	55.413	16.03	M6 V	1	0.33	0.04	3.04	0.40	14.9	-
8		0	8	7	7		2				4	3	8	4	0.30
10	PN A66 51	017.6-10.2	408664358380322240	285.25	-	17.616	-	O(H), O(H)3-	1,4	0.44	0.04	2.27	0.23	15.3	-
9			0	6	18.20		10.24	5 Vz			5	8	5	6	0.17
					4		2								
11	PN A66 57	058.6+06.	202409848467054195	289.27	25.62	58.613	6.175			0.51	0.09	1.96	0.36	17.5	0.40
0		1	2	4	6						3	7	0	6	
11	PN A66 6	136.1+04.		44.674	64.50	136.09	4.934			1.00	0.17	0.99	0.17	18.4	0.99
1		9	467936205865972352		2	9					7	6	6	2	
11	PN A66 61	077.6+14.	212768498263984422	289.79	46.24	77.699	14.77	hgO(H)	1	0.58	0.08	1.71	0.25	17.2	-
2		7	4	3	8		8				6	2	3	9	0.56
11	PN A66 63	053.8-03.0	182096391328451750	295.54	17.08	53.891	-3.027	M4 V	1	0.36	0.03	2.77	0.26	15.1	0.16
3			4	3	7						4	0	3	0	
11	PN A66 65	017.3-21.9	686461781799197862	296.64	-	17.305	-	Op k	1	0.63	0.05	1.59	0.12	15.4	0.17
4			4	3	23.13		21.97				1	3	9	6	
					7		2								
11	PN A66 66	019.8-23.7	686449611579556748	299.38	-	19.842	-			1.05	0.22	0.95	0.20	18.1	-
5			8	1	21.61		23.78				0	5	1	2	0.27
					3		2								
11	PN A66 7	215.5-30.8	298622039646223603	75.781	-	215.57	-	DAO	1	2.02	0.07	0.49	0.01	15.4	-
6			2		15.60	0	30.85				2	5	8	5	0.53
					6		5								
11	PN A66 72	059.7-18.7	176134141779912832	312.50	13.55	59.795	-			0.69	0.08	1.44	0.18	16.0	-

7			0	9	8		18.72				8	4	4	4	0.54
							9								
11	PN A66 74	072.7-17.1	184039554792499315	319.21	24.14	72.663	-	DAO	1	1.47	0.15	0.67	0.07	17.0	-
8			2	8	8		17.15				6	8	2	5	0.52
							2								
11	PN A66 78	081.2-14.9	185068509126944179	323.87	31.69	81.296	-	[WC]-PG1159	1	0.63	0.06	1.58	0.16	13.1	-
9			2	2	6		14.91				4	1	1	5	0.36
							3								
12	PN A66 79	102.9-02.3	200493657397825267	336.57	54.82	102.98	-2.322	F0 V	1	0.29	0.05	3.48	0.68	16.6	1.24
0			2	2	7	2					6	3	2	5	
12	PN A66 82	114.0-04.6	199821247624708288	356.44	57.06	114.06	-4.671	K0 IV	1	0.50	0.02	2.01	0.08	14.4	1.55
1			0	9	6	7					2	4	8	3	
12	PN ARO 121	164.8+31.	936605992140011392	119.46	53.42	164.80	31.18	PG 1159 (E:)	1	0.99	0.10	1.01	0.10	17.0	-
2		1		5	1	6	1				2	2	5	9	0.63
12	PN DeHt 2	027.6+16.	437633109203626803	265.42	3.116	27.650	16.92	0	1	0.58	0.07	1.71	0.20	15.0	-
3		9	2	0			5				0	7	5	0	0.33
12	PN DeHt 5	111.0+11.	222962493189692416	334.89	70.93	111.09	11.64	DA	1	3.11	0.05	0.32	0.00	15.4	-
4		6	0	0	4	1	1				0	1	5	7	0.36
12	PN DS 1	283.9+09.	536280433024645734	163.66	-	283.90	9.726	M5 V	1	1.29	0.04	0.77	0.02	12.1	-
5		7	4	9	48.78	3					1	3	4	8	0.32
					4										
12	PN DS 2	335.5+12.	600832561404828441	235.77	-	335.58	12.44	O(H)	1	1.21	0.06	0.82	0.04	12.3	-
6		4	6	1	39.30	4	8				2	8	2	5	0.29
					4										
12	PN Fg 1	290.5+07.	534819594818515673	172.15	-	290.50	7.927			0.47	0.06	2.10	0.27	14.5	-

7		9	6	1	52.93	5					1	6	2	0	0.31
					4										
12	PN G284.2-05.3	284.2-05.3	525594753678479193	150.32	-	284.26	-5.329	[WR]	1	0.27	0.06	3.70	0.92	16.7	-
8			6	8	61.86	2					7	6	2	8	0.28
					8										
12	PN H 3-75	193.6-09.5	334038408258816896	85.187	12.35	193.64	-9.575	G-K	1	0.23	0.03	4.33	0.72	13.8	1.40
9			0		6	7					9	3	4	2	
13	PN HaTr 4	335.2-03.6	593710306911524019	251.25	-	335.25	-3.620			0.36	0.07	2.75	0.59	16.6	0.71
0			2	1	51.20	2					9	2	6	9	
					6										
13	PN HaTr 7	332.5-16.9	591165686527607808	268.53	-	332.50	-	DAO	1	0.51	0.05	1.96	0.21	14.8	-
1			0	9	60.83	7	16.91				5	0	3	6	0.40
					3		1								
13	PN HaWe 5	156.9-13.3	223404549266115456	56.361	37.81	156.90	-	DA	1	3.17	0.11	0.31	0.01	17.4	-
2					4	9	13.32				9	6	2	2	0.23
							2								
13	PN HbDs 1	273.6+06.	541132856582282252	148.18	-	273.67	6.192	O(H), O(H)3	1,4	1.43	0.04	0.70	0.02	12.4	-
3		1	8	5	46.28	2		Vz			8	0	3	6	0.36
					0										
13	PN HDW 1	124.0+10.	535357713421191168	16.782	73.55	124.06	10.71	DA	1	3.19	0.05	0.31	0.00	16.4	-
4		7			6	1	9				7	3	6	2	0.19
13	PN HDW 11	034.1-10.5	421333474669522188	292.78	-3.709	34.146	-	hgO(H)	1	0.43	0.10	2.33	0.57	16.7	0.11
5			8	0			10.51				6	2	9	1	
							6								
13	PN HDW 12	014.8-25.6	675424024656439078	299.55	-	14.880	-			1.79	0.34	0.55	0.10	18.5	-

6			4	4	26.47		25.60				2	8	7	4	0.41
					1		2								
13	PN HDW 13	099.7-08.8	198657455798385510	337.63	47.52	99.717	-8.897			0.91	0.15	1.10	0.19	18.2	-
7			4	9	3						7	1	0	9	0.44
13	PN HDW 3	149.4-09.2	241918950690107264	51.814	45.40	149.50	-9.277	DAO	1	1.16	0.09	0.86	0.06	17.1	-
8					6	0					3	2	9	6	0.19
13	PN HDW 4	156.3+12.	268129413812162816	84.484	55.53	156.30	12.54	DA	1	3.35	0.09	0.29	0.00	16.5	-
9		5			8	9	5				6	8	9	1	0.42
14	PN HDW 5	218.9-10.7	300156384071009651	95.905	-	218.98	-	hgO(H)	1	0.90	0.08	1.10	0.10	16.1	0.24
0			2		10.22	7	10.77				3	6	1	3	
					3		7								
14	PN HFG 1	136.3+05.	468033345145186816	45.946	64.91	136.38	5.553	F9 V	1	1.40	0.02	0.71	0.01	14.0	0.65
1		5			0	1					2	6	1	4	
14	PN HFG 2	247.5-04.7	559496913532931507	115.59	-	247.57	-4.704			0.57	0.07	1.76	0.21	17.0	-
2			2	9	32.79	7					0	4	9	4	0.14
					7										
14	PN IsWe 1	149.7-03.3	250358801943821952	57.275	50.00	149.71	-3.398	PG 1159 (A)	1	2.25	0.08	0.44	0.01	16.5	-
3					4	5					3	5	6	0	0.26
14	PN IsWe 2	107.7+07.	221868826153427891	333.34	65.89	107.72	7.809	DA	1	1.12	0.12	0.89	0.09	18.1	-
4		8	2	4	9	8					1	0	6	3	0.08
14	PN Jn 1	104.2-29.6	287111970533573555	353.97	30.46	104.20	-	PG 1159 (E)	1	1.21	0.09	0.82	0.06	16.0	-
5			2	2	8	8	29.64				0	6	1	2	0.53
							2								
14	PN K 1-16	094.0+27.	216056292722484057	275.46	64.36	94.025	27.42	PG 1159 (lg	1	0.47	0.05	2.14	0.24	14.9	-
6		4	6	7	5		8	E)			3	6	3	9	0.63

14	PN K 1-2	253.5+10.	564780939211296000	134.44	-	253.57	10.78	K2 V (earlier	1	0.47	0.11	2.11	0.51	17.0	0.16
7		7	0	1	28.96	7	0	than)			5	5	4	6	
					0										
14	PN K 1-27	286.8-29.5	464843417523011404	89.259	-	286.87	-	O(He)	1	0.18	0.04	5.49	1.38	16.0	-
8			8		75.67	7	29.57				6	6	5	5	0.54
					3		7								
14	PN K 2-2	204.1+04.	315841968419578265	103.09	9.965	204.15	4,734	hgO(H), early	1.2	1.16	0.05	0.86	0.04	14.2	_
9		7	6	7		0		0	-, -		9	3	4	2	0.53
15	PN K 2-7	, 019.4-19.6	6868/31267915/8108	, 295.12	_	19.407		0		0.57	0.03	1 75	0.11	- 12.3	1.53
0	1 IV IX 2-7	017.4-17.0	Q	1	20.45	17.407	10.65			0.57	6	0	2	0	1.55
0			0	1	20.45		19.05				0	0	2	7	
					2		9								
15	PN K 3-81	083.9-08.4	196410253318056409	320.56	38.12	83.938	-8.437			0.19	0.04	5.16	1.23	15.7	-
1			6	4	1						6	1	2	2	0.28
15	PN Lo 1	255.3-59.6	475552001070114150	44.244	-	255.32	-	hgO(H)	1	1.24	0.04	0.80	0.02	15.1	-
2			4		44.17	1	59.62				3	8	8	6	0.65
					2		0								
15	PN Lo 16	349.3-04.2	596085252024510374	263.92	-	349.36	-4.224	O(H)3-4 Vz	4	0.55	0.06	1.82	0.20	16.0	0.80
3			4	5	40.19	2		((fc))			1	9	5	6	
					1										
15	PN Lo 5	286.5+11.	537434810282367974	168.47	-	286.52	11.79			0.63	0.10	1.59	0.25	16.9	-
4		6	4	6	47.95	4	0				1	0	5	3	0.52
					0										
15	PNLo8	310 3+24	61625/21015/0/5811	201.40		310.38	24 77	O(H) O(H)3	1 4	0.95	0.12	1.04	0.13	12.0	
15	IN LUO	510.5+24.	010234217134043011	201.40	27.60	310.30	24.77	$O(\Pi), O(\Pi)S$	1,4	0.75	0.12	1.04	0.15	12.7	-
5		/	2	6	37.60	5	3	VZ			0	8	2	5	0.54
					4										

15	PN LoTr 11	313.8-12.6	579525799020754598	230.29	-	313.89	-			0.72	0.15	1.39	0.29	18.3	-
6			4	4	72.22	4	12.61				1	3	3	0	0.42
					4		9								
15	PN LoTr 5	339.9+88.	395842833458960755	193.89	25.89	339.89	88.45	G5 III	1	1.98	0.04	0.50	0.01	8.63	1.04
7		4	2	0	2	6	7				6	6	2		
15	PN M 1-27	356.5-02.3	405395582466257164	266.68	-	356.53	-2.394	[WC11]?	1,2	0.33	0.03	3.02	0.34	13.9	1.39
8			8	9	33.14	1		peculiar			7	3	0	1	
					3			1							
15	PN M 1-32	011 9+04	414489791318106918	269.08	-	11 977	4 234			0.39	0.07	2.54	0.49	15.3	1 19
9	110101132	2	111103731310100310	4	16.48	11.977	1.251			0.57	6	2.51	1	9	1.17
		2	7	-	5						0	2	-		
					3						0.01		0.00	10.0	
16	PN M 1-46	016.4-01.9	410391052495423692	276.98	-	16.451	-1.975	wels, Of(H),	1, 3,	0.32	0.04	3.08	0.39	12.8	0.74
0			8	5	15.54			O(H)7 I(fc)	4		2	3	8	4	
					8										
16	PN M 1-65	043.1+03.	431186892436755520	284.14	10.86	43.198	3.810	O6	1	0.22	0.04	4.46	0.79	14.3	0.99
1		8	0	0	9						0	7	7	6	
16	PN M 1-73	051.9-03.8	431842066929910028	295.28	14.95	51.907	-3.867	wels, O3.5 I f	1, 3	0.24	0.06	4.14	1.04	14.2	0.63
2			8	9	0						1	9	8	2	
16	PN M 1-77	089.3-02.2	197199551053575564	319.78	46.31	89.384	-2.266	OB?	1	0.39	0.02	2.58	0.18	11.9	0.96
3			8	1	3						7	9	4	3	
16	PN M 3-4	241.0+02.	571072561642334835	118.79	-	241.09	2.353	cont.	1	0.22	0.03	4.50	0.65	15.2	1.46
4		3	2	7	23.63	2					2	8	7	2	
					7										
16	PN M 3-6	253.9+05.	563947200159930252	130.16	-	253.97	5.778	wels, wels	1, 2	0.31	0.04	3.18	0.45	13.0	-
5		7	8	8	32.37	1					5	2	9	7	0.07
					1	1					1		1	1	1

					6										
16	PN MaC 1-2	309.5-02.9	585219482984889984	208.61	-	309.53	-2.932			0.75	0.03	1.34	0.05	15.1	1.08
6			0	3	64.99	1					2	1	8	3	
					4										
16	PN Me 1-1	052.5-02.9	431878581023471475	294.79	15.94	52.542	-2.960	K (1-2) II	1	0.23	0.03	4.43	0.72	12.3	1.19
7			2	1	7						7	4	3	2	
16	PN MeWe 2-4	314.0+10.	609027115480816204	210.31	-	314.08	10.68			0.85	0.14	1.17	0.20	17.9	-
8		6	8	4	50.66	6	3				8	1	4	1	0.20
					9										
16	PN Mz 1	322.4-02.6	588183800691488678	233.56	-	322.49	-2.611			0.70	0.13	1.42	0.28	17.9	0.24
9			4	9	59.15	1					9	3	1	8	
					2										
17	PN PB 4	275.0-04.1	531027859819885401	138.78	-	275.08	-4.162	emission-line,	1, 2	0.30	0.06	3.28	0.74	16.1	-
0			6	2	54.87	4		wels?			9	6	7	0	0.01
					9										
17	PN Pe 1-15	025.9-02.1	425232109266953817	281.60	-7.243	25.911	-2.184			0.20	0.03	5.01	0.84	14.7	1.83
1			6	1							4	1	4	0	
17	PN Pe 1-19	026.5-03.0	425230721126395468	282.43	-7.026	26.481	-2.823			0.37	0.06	2.73	0.50	15.7	0.16
2			8	6							8	3	5	1	
17	PN PuWe 1	158.9+17.	997854527884948992	94.891	55.61	158.92	17.85	DAO	1	2.43	0.08	0.41	0.01	15.5	-
3		8			2	2	5				2	2	4	2	0.46
17	PN Sa 1-8	020.7-05.9	410220768629102886	282.68	-	20.779	-5.966	OB, O,	1,2,	0.35	0.04	2.85	0.36	14.2	0.26
4			4	5	13.51			O(H)4-8 III	4		5	9	6	2	
					7										
17	PN Sp 1	329.0+01.	598207213254582412	237.92	-	329.07	1.957	O(H), O(H)3-	1,4	0.67	0.02	1.49	0.05	13.7	0.70

5		9	8	1	51.52	9		5 (fc)			3	6	2	3	
					5										
17	PN SuWt 2	311.0+02.	587059298789309798	208.93	-	311.04	2.478	B9 V	1	0.38	0.03	2.64	0.25	11.9	0.66
6		4	4	0	59.37	6					6	7	5	0	
					8										
17	PN Th 2-A	306.4-00.6	586519236296308659	200.64	-	306.41	-0.689			0.17	0.04	5.93	1.41	15.9	1.73
7			2	1	63.35	4					0	0	4	6	
					0										
17	PN V-V 3-5	014.0-05.5	409247240417708787	279.13	-	14.028	-5.528	А	1	0.63	0.03	1.58	0.07	13.2	0.79
8			2	4	19.32						0	1	4	7	
					5										
17	PN We 1-10	086.1+05.	217983258576193203	307.96	48.88	86.191	5.460			0.63	0.11	1.58	0.30	18.0	-
9		4	2	8	0						9	5	0	1	0.25
18	PN We 1-6	224.9+01.	304720425914952448	109.35	-	224.94	1.065	hgO(H)	1	0.59	0.05	1.70	0.16	15.8	-
0		0	0	9	10.17	2					6	6	3	0	0.08
					7										
18	PN WeDe 1	197.4-06.4	334199655504804185	89.854	10.69	197.40	-6.442	DA	1	1.80	0.12	0.55	0.03	17.2	-
1			6		5	5					7	6	9	0	0.48
18	PNS-EPN	145.0-19.0	334229755066622720	40.174	39.02	145.09	-			0.45	0.07	2.23	0.38	15.8	0.73
2	NGC1023-194				4	6	19.10				7	2	5	4	
							0								
18	PPA J1835-	005.8-09.2	404863147827633984	278.83	-	5.892	-9.233			1.77	0.32	0.56	0.10	18.6	-
3	2811		0	8	28.19						0	6	2	1	0.05
					8										
18	RCW 24	258.5-01.3	552793458714141516	126.44	-	258.50	-1.289	absorption	1,4	1.20	0.13	0.83	0.09	18.2	0.09

4			8	8	40.21	9		lines, DA			9	5	7	0	
					9										
18	SH 2-174	120.3+18.	228629668606697689	356.25	80.95	120.21	18.43	DAO	1	3.41	0.03	0.29	0.00	14.5	-
5		3	6	9	0	7	0				5	3	3	4	0.53
18	Sh 2-176	120.2-05.3	421836329014389248	7.972	57.38	120.28	-5.396	DA	1	1.17	0.19	0.85	0.14	18.5	-
6					0	8					5	3	2	1	0.11
18	SH 2-188	128.0-04.1	509206447837376128	22.638	58.41	128.04	-4.069	DAO	1	1.13	0.10	0.88	0.07	17.4	-
7					4	9					0	7	9	0	0.03
18	SH 2-216	158.5+00.	254092090595748096	70.839	46.70	158.48	0.472	DAO	1	7.94	0.06	0.12	0.00	12.6	-
8		7			2	6					6	6	1	3	0.56
18	SH 2-68	030.6+06.	427632858104644710	276.24	0.860	30.673	6.279	hybrid	1	2.48	0.07	0.40	0.01	16.4	0.28
9		2	4	3							5	4	2	3	
19	SH 2-71	035.9-01.1	426841910671177177	285.50	2.153	36.053	-1.367	A7 V - F0 V	1	0.59	0.03	1.70	0.10	13.4	1.21
0			6	1							5	0	0	7	
19	SH 2-78	046.8+03.	450648409738338227	285.79	14.11	46.832	3.845	PG 1159	1	1.58	0.12	0.63	0.05	17.6	-
1		8	2	2	6						7	4	1	4	0.05
19	TK 1	191.4+33.	708990321934310784	126.77	31.50	191.40	33.08	DAO	1	1.87	0.07	0.53	0.02	15.6	-
2		1		3	2	5	4				9	5	3	8	0.63
19	TK 2	096.8+31.	163431474065845632	264.51	66.89	96.892	31.96	DA	1	5.77	0.04	0.17	0.00	14.5	-
3		9	0	1	6		2				6	3	1	6	0.61
19	WRAY 72	341.5+12.	601080580735051392	241.61	-	341.54	12.10	[WC3]	1	0.71	0.03	1.41	0.07	13.9	0.21
4		1	0	9	35.75	9	5				9	8	9	1	
					3										
19	WRAY 16-139	309.0-04.2	585186514806938956	208.12	-	309.00	-4.241	[WC9]	1	0.17	0.02	5.88	0.70	13.1	0.37
5			8	8	66.39	3					0	9	1	8	

					1										
19	WRAY 16-151	312.6-01.8	585413876638324723	214.68	-	312.61	-1.900	emission-line,	1, 2,	0.21	0.02	4.68	0.58	14.6	1.21
6			2	1	63.11	2		[WC10-11],	4		7	8	7	2	
					9			O(H)4 Ifc							
19	WRAY 16-74	288.8-05.2	525180214175270336	158.94	-	288.87	-5.216			0.34	0.02	2.91	0.21	15.0	1.66
7			0	0	64.32	9					5	6	3	6	
					0										
19	WRAY 17-1	258.0-15.7	550900495257669990	108.70	-	258.06	-	PG 1159	1	0.52	0.10	1.93	0.40	16.7	-
8			4	6	46.96	8	15.74				9	1	5	5	0.04
					1		8								
19	WRAY 17-31	277.7-03.5	530705480006219840	142.83	-	277.71	-3.556	DAO	1	0.66	0.11	1.51	0.25	17.9	-
9			0	5	56.29	4					0	9	5	4	0.35
					4										
20	Wray 17-40	286.2-06.9	524640868929988748	151.74	-	286.27	-6.949			0.25	0.06	4.05	1.00	16.5	-
0			8	8	64.36	8					1	2	9	1	0.35
					4										