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Abstract 

The precise prediction of end-to-end Parts shipments delivery lead time (LT) considerably influences the 

efficiency and quality of manufacture planning and job scheduling in Oil and gas industry. Lead time 

transparency and predicting precise lead times allow Oil and gas industry to reduce operating expenses, enhance 

capital, upturn revenues, and improve their viable advantages. Clients will be able to better assign resources well 

and reduce the risk through conviction in their product and services allocation. The lead time prediction using 

machine learning algorithm can overall improve the job scheduling, improve service levels, gain efficiency, lead 

to reduce cost, and improves customer satisfaction. This paper describes the algorithm and techniques to execute 

the research using Machine Learning Methods to Predict Order Lead times. We are going to share the prediction 

accuracy results using different algorithm and share the sensitivity analysis results. The algorithm used to train 

the model consumed historical data from organization data using logistic application and various variables 

which are specific to the Supply chain in the Oil and gas industry. 

Keywords: Machine Learning; Lead time; Random Forest; Logistic; Production. 

1. Introduction 

Predictive data analytics contains a variety of statistical methods from data mining, predictive modelling, and 

ML that analyze historical facts to make predictions about prospects or unidentified occasions.  
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“CRISP-DM breaks the process of data mining into six major phases:1) Business Understanding; 2) Data 

Understanding; 3) Data Preparation; 4) Modeling; 5) Evaluation; 6) Deployment” [1]. The fourth stage 

(modeling) is where machine learning (ML) algorithms are engaged to build prediction for Lead time. In 

particular, ML is defined as automated computational method that “learns” and extract information and patterns 

directly from (historical) data.  There are four approaches, 1) Supervised, 2) Unsupervised, 3) Semi-Supervised, 

and 4) Reinforcement Machine Learning. 

 Supervised ML – Is a learning task with full set of labeled data while training an algorithm. In other 

words, it accepts that training instances are classified or labeled (learning affiliation between a set of 

descriptive features and a target feature). In Supervised ML, the model needs to be trained on a 

classified dataset that means we have both raw input data as well as its outcomes. We divided our data 

into a training dataset and test dataset, where the training dataset is used to train our system, whereas 

the test dataset turns as new data for predicting results or to see the accuracy of our model. Supervised 

ML is relatively a simpler, highly accurate, and trustworthy method. There are three key areas where 

supervised learning is beneficial: Classification Techniques, Regression, and Forecasting. 

Classification techniques uses the algorithm to predict a discrete value, focused on predicting a 

qualitative reaction by analyzing data and identifying patterns. On the other hand, regression technique 

used continuous data. The technique classically used in predicting, forecasting, and finding 

relationships amongst quantitative data. While Forecasting is the process of making predictions about 

the prospect based on the past and present data. It is most commonly used to analyze trends. 

 Unsupervised ML- Concerns the analysis of unclassified examples. In unsupervised learning, a deep 

learning model is offered a dataset without categorical commands on what to do with it. The training 

dataset in this approach is a collection of instances without a specific desired outcome or an accurate 

answer. Unsupervised learning is computationally compound, less accurate, and reliable method. 

 Semi-Supervised ML (SSL) - It is expected that there are also unlabeled data available at the time of 

training in addition to the labeled data. The objective of SSL methods is to excerpt information from 

the unlabeled data that could ease learning a discriminative model with greater performance. 

 Reinforcement Machine Learning - Is a category of machine learning techniques that enables an agent 

(Artificial Intelligent agent) to learn in a collaborating environment by trial and error using response 

from its own activities and experiences. 

“Regression technique in supervised machine learning predicts a single and continuous target output value using 

training data” [2]. In our scenario, modeling the association between the continuous variable (e.g. lead-time) and 

one or more predictors (For example, supplier origin, Buyer destination, Order type, etc.) using a linear function 

is the most suitable approach. One of the major strengths of using regression algorithm is that the Outputs 

always have a probabilistic analysis and can be normalized to avoid overfitting. However, the Weaknesses of 

Logistic regression may underperform when there are numerous or nonlinear decision limitations. This method 

is not malleable, so it does not capture more complex connections. In this paper, we emphasis on supervised 

machine learning to predict the lead-time. The paper is organized as follows: The first unit presents the 

advanced approaches in lead-time prediction using regression algorithms. Second unit provides a methodology 
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for handling regression jobs which is demonstrated in the context of Oil and gas industry. Finally, we discourse 

on the main findings and identify future research capabilities. 

2.  Background and concept 

A lead time is the latency between the initiation and completion of a process. For example, the lead time 

between the placement of an order and delivery of new cars by a given manufacturer might be between 2 weeks 

and 6 months, depending on various particularities. One business dictionary defines "manufacturing lead time" 

as the total time required to manufacture an item, including order preparation time, queue time, setup time, run 

time, move time, inspection time, and put-away time. For make-to-order products, it is the time between release 

of an order and the production and shipment that fulfill that order. For make-to-stock products, it is the time 

taken from the release of an order to production and receipt into finished goods inventory. This research focus 

on make-to-stock products. Lead time in inventory management is the lapse in time between when an order is 

placed to replenish inventory and when the order is received. Lead time affects the amount of stock a company 

needs to hold at any point in time. When considering the total amount of time for a purchase order to be 

delivered from a supplier, factor in the time taken for the supplier to accept and process the order. Lead time 

directly affects your total inventory levels. The longer your lead time the more stock you will need to hold in 

your inventory. Longer lead times make deliveries more unpredictable and force a company to rely heavily on 

demand forecasts to make orders. Once you have calculated your lead time, the next step is to employ corrective 

measures to reduce it. While there have been improvements to shipping and freight services in recent years, 

there are other factors that affect lead times. Orders may take time to process and be approved within your 

business, your suppliers will then need to place orders of their own for the materials to create your products, and 

there might be delays due to checks done at the ports by customs. There are different trade control compliance 

and regulations for each country that needs to be factored in an international organization. Traditionally, lead 

time calculation could be done using all those factors into consideration. For all of these factors add to your lead 

time. Hence, there are several factors required to be considered to calculate lead time in a specific industry. 

However, with the advancement of the technology, predictive analysis techniques can be used to predict the lead 

time based on the products and supplier/manufacturer.  

2.1. Related work 

Many research have focused on finding the right design, implementation, and evaluation of the lead time for 

various industries. In the research paper, Lukas and his colleagues outlines the most relevant research that is 

very close to this paper. They first discuss knowledge discovery approaches in production planning and control 

(PPC) then explore state-of-the-art regression-based reproaches in lead time prediction. “Statistical learning, 

data mining or knowledge discovery was first defined in 1989 as a new intelligent tool for extracting useful 

information and knowledge from different databases. The main purpose of production planning and control 

(PPC) is to establish routes and schedules for the work that will ensure the optimum utilization of materials, 

workers, and machines” [3]. Cheng and his colleagues revised the relevant papers since 2010 and discussed the 

typical knowledge mining techniques in production management. According to this survey, “The four most 

reflected typical application areas are advanced planning and scheduling, quality improvement, fault diagnosis 
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and defect analysis. A fifth category was defined, in which flow time/cycle time prediction could be found –

among life and yield prediction. PPC was identified as a research gap already in 2009, and the review in 2017 

has revealed just a few applications in this passed 9 years” [4]. Consequently, more attention from the research 

community would be needed to data mining in PPC. Ensuring the operation of the plant in accordance with 

these plans. 

3. Methodology 

From CRISP-DM model, the first three phases related to data processing as described in Figure 1.The unit ML 

algorithm is the modeling phase, and the evaluation is done in the Results section, where pertinent landscapes 

have been picked and the accurateness of prediction model has been calculated. 

 

Figure 1: Data Analysis and Processing Steps 

As specified above, the case study has been led in the Oil and gas industry. A distinct sort of this industry is that 

most of the products Lead times are fabricated in manifold layers. Many production plants have cross-used 

products among various product lines with the option of ordering Parts from Distribution centers, also the plants 

are organized in operation of multiple field jobs. This leads to a job driven production system, where products 

have to execute on the multiple jobs numerous times in order to achieve optimum utilization of logistics. 

Moreover, Industry also has a trend to forecast the future jobs and hence the usage of the product to complete 

the job in the same location. Having said that, many times the stock can reside and maintained in the location 

warehouse after completing the required job while waiting for the next assigned job. Due to the intricacy 

defined above, the Oil and gas industry conventionally invested a lot in advanced IT systems to build Stock 

replenishment tools for the parts stock on hand visibility, resulting in a large amount of, detailed data 

dimensions available for Stocks availability. The data that was used for the creation of the model was a dataset 

used by the logistic data warehouse that enclosed half a million rows and 50 plus columns, involving a 

combination of numerous data sources that the company has at its usage. This data encompassed various 

information such as the type of product, different manufacturers, various suppliers from different locations, the 
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buyer of the product, forecast of the consumption, and various dates and coordinates related to the order and 

delivery. Every line has a unique data set ID and a dimension of order lead time in days, which became the 

dependent variables. The 1st phase in the supervised learning data process stage is to collect labeled training 

data. The label is the output and delivers feedback for the algorithm. Provided sufficient data is obtainable in the 

raw data collection phase, the next stage is to divide this labeled data into three sets: training, testing, and 

validation to generate the ML algorithm. The algorithm uses the training set to regulate the model to reduce the 

error.  

 

Figure 2: Histogram of the lead time prediction analysis 

The validation set is severe from the training set and allows one to unconventionally measure the advancement 

of the learning algorithm. This measure can be used to define a cutoff point in the training algorithm to 
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steadiness the accuracy of the learned model against overfitting. The test set is the final set and it is intended to 

be used only when the model has been set up to be the finest on the validation set. This set offers a real domain 

assessment of the model performance on unknown data. Test data is a kind of final check for a model which has 

learned its training data effectively and can generalize to new data during data processing. A Histogram below 

in Figure 2 provides a visual representation of the data distribution of mathematical data by showing the number 

of data points that fall within a definite range of values. Histograms can exhibition a large amount of data and 

the frequency of the data points. The median and distribution of the data can be comprehended visually. In 

addition, it can show any outliers or gaps in the data. Lead time on X-axis: The frequency on Y-axis and the 

bar is the altitude indicates the number of times that the values unused. 

3.1. Machine learning algorithms 

In this section, the different machine learning algorithms are described. Then, we show different error measures. 

Next, the accuracy of the verified ML procedures based on various error measures is presented. Finally, a 

sensitivity analysis of outcomes of the significant variables of the models are used to predict the model. 

Machine learning algorithms are mathematical programs that can learn from data and develop from knowledge, 

without human intervention. To build the supervised learning model, each training should include a set of input 

features and a definite output value. . In case of regression, the importance of a continuous variable is to be 

predicted. The utmost major regression methods are the simply interpretable linear regression models (LM), 

which assume a just about linear relationship among the variables. Below algorithm method have been used to 

train the model. 

 Linear Regression is a statistical approach that models the relationship between input features and 

output. The input features are called the independent variables, and the output is called a dependent 

variable 

 Ridge Regression is the most ordinarily used regression algorithm to estimate an answer for an 

equation with no distinctive solution. This type of problem is widespread in machine learning tasks, 

where the "finest" solution must be elected using limited data. 

 Lasso Regression (Least Absolute Shrinkage and Selection Operator; also Lasso or LASSO) is 

a regression analysis method that executes two variable collection and regularization in order to 

progress the prediction accuracy. 

 Random Forest (RF) RF makes predictions by combining the results from many singular decision 

trees - so we call them a forest of decision trees, as described in Figure 3. Since RF combines several 

models, it falls under the group of ensemble learning. 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2020) Volume 54, No  3, pp 87-96 

 

93 
 

 

Figure 3: Random Forest technique 

 Support Vector Machines (SVM) is a supervised machine learning method that is widely used in 

design, recognition, and classification of hitches, when data has surely two classes. 

 Multivariate adaptive regression spline (MARS) is a nonparametric regression technique and can be 

perceived as an addition of linear models. 

 K-Nearest Neighbors (KNN) procedure uses the whole data set as the training set, instead of piercing 

the data set into a training set and test set. 

 Artificial Neural networks (ANN) or neural networks are computational procedures. It envisioned to 

pretend the activities of organic structures composed of “neurons”. ANNs are computational models enthused 

by an animal’s central nervous system. It is capable of machine learning as well as pattern recognition. These 

presented as systems of interconnected “neurons” which can compute values from inputs. Artificial Neural 

network is typically organized in 3 layers; Input layer, Hidden layer, and Output layer. ANNs are considered as 

simple mathematical models to enhance existing data analysis technologies. Although it is not comparable with 

the power of the human brain, it is the basic building block of the Artificial intelligence. 

3.2. Lead time prediction with regression: state-of-the-art methods 

In the present paper, lead time –as one of the most important control parameter and target figures of PPC– is 

analyzed and predicted with the help of different ML algorithms. As described in table: 1 below, we have 

applied all the above-mentioned model techniques and achieved the resultant accuracy. 
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Table 1: Precision of the established ML algorithms 

  LM RIDGE Lasso RF SVM MARS KNN ANN 

MASE 30.51 40.5 40.23 30.42 27.81 38.835 39.6 48.06 

MAE 357.3 459 457.2 351 380.7 439.2 453.6 481.5 

MSE 332472.6 516168 515645.1 324702 450623.7 462274.2 49940.1 592966.8 

RMSE 546.3 681.3 680.4 540 636.3 644.4 670.5 693.9 

NRMSE 19.48 22.27 22.27 19.3 21.343 21.46 22 23.62 

Performance metrics (error measures) are dynamic mechanisms of the assessment frameworks in several 

fields. “Performance metrics (error measures) are vital components of the evaluation frameworks in various 

fields” [5]. Deviation is useful for accuracy of continuous variables. Deviation is the difference between two or 

more values. E.g. prediction and actual, thus a measure of accuracy or performance. Deviation is also frequently 

simply called "error". There are 5 major error measures as follows: 

 Mean Absolute Scaled Error (MASE): MASE is good if your accuracy must be comparable with 

other accuracies based on different datasets. 

 Mean absolute error (MAE): MAE is one of the simplest measure of deviation. 

 Mean square error (MSE): Square-based deviations are sensitive to outliers. Square-based deviations 

are used because larger errors have big effect on the score while small errors have little effect. They 

should be more useful when large errors are particularly undesirable. 

 Root MSE (RMSE): Root-mean-square error (RMSE) is by far the most common deviation. 

 Normalized Root-Mean-Square Error (NRMSE): NRMSE is useful if you are comparing accuracies 

of two different datasets. The original RMSE is scale-dependent and is similar to MASE. The 

concluding model recommended for lead time prediction in our case is the Random Forest model as 

described in below Table: 2. Model running take about 35 seconds, With NRMSE of 19.3 accuracy is 

reached. 

Table 2: Explanation of sensitivity analysis outcomes of the eight best significant variables of the model 

Feature Feature Description RF LM 

Destination 

Country 

Buyer destination country and location 2.4 2.6 

SOH If stock is available to ship readily 6.5 4.9 

Part Number Ordered part 4.8 3.5 

Order Type If Item is enrouting via Distribution services center or Purchase order is directly for 

the supplier 

3.4 2.8 

Shipment 

Status 

Various status ( e.g. AT CUSTOMS, CUSTOMS CLEARED,ENROUTE TO 

DELIVERY LOCATION) 

4.7 5.5 

RDD Requested Delivery Date  1.5 1.9 

Supplier Origin Supplier for the purchase Part 2.5 2.4 

Arrival Time Arrival time of the shipment -6.5 -4.2 

3.3. Constraint and Limitations 
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The biggest challenge in supervised learning is that irrelevant input features from real-world data classification 

to present training data could give inaccurate results. The decision boundary might be overstressed if your 

training set does not have samples that you want to have in a class.” The broader philosophy of data preparation 

is to discover how to best expose the underlying structure of the problem to the learning algorithms” [6]. Hence, 

Data preparation and processing is always a challenge. Accuracy undergoes when impossible, unlikely, and 

incomplete values have been recorded as training data. The first steps of our process of elaborate data cleaning 

and deciding which variables to preserve for the final modeling. A great lot of the data was categorical, and 

many of the variables were totally connected with others (For example. Part, Supplier and Buyer Destination 

Country) meaning that we had to be thorough in ensuring that zero in our final dataset was redundant. 

Furthermore, the large number of categorical variables also destined that many dummy variables would have to 

be formed. In addition, many of the columns, mainly involving dates, had up to 80% of the data not present, 

which had to be accounted for as well. Furthermore, strong outliers occurred as a result of unclean data, which 

led to lead time records of as little as zero days to multiple years, with either not likely in this scenario. The 

main data manipulation techniques extensively used in ML algorithm are filtering and ordering rows, renaming 

and adding columns, and computing summary statistics. However, “there are 8 essential data handling verbs that 

were used to complete the data manipulations job. Such as 1) filter(); 2) distinct(); 3) arrange(); 4) select(); 5) 

rename(); 6) mutate();7) summarize()  and 8) group_by()” [7]. 

4. Conclusions 

In this paper, we demonstrate that machine learning can accurately predict end-to-end Parts shipments delivery 

lead times. The proposed methods can reduce the time and cost of overall logistics for the equipment movement. 

The developed scripts can be implemented in real time or near real time in the Oil and gas industry. 

Furthermore, if the identified approach is also suitable for different processes, the scope of the analysis can be 

extended using a similar approach. 

5. Recommendation 

We recommend further experimental and theoretical studies of the machine learning for lead time prediction in 

Oil and gas industry. Additional training set for accurate sampling is required to achieve the higher accuracy. 
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