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Abstract 

The Ordinary Least Square (OLS) estimator of the classical linear regression model is Best Linear Unbiased 
Estimator (BLUE) provided the assumptions of the model are not violated. In this paper, attempt is made to combine 
some Feasible Generalized Least Square (FGLS) estimators with the estimator based on Principal Component (PC) 
Analysis and compare their finite sampling properties and goodness-of-fit statistics with that of the OLS estimator 
through Monte Carlo Simulation study. Using both normally and uniformly distributed variables as regressors, 
results show that the estimators perform better and similar with increased sample sizes and that the results from 
normally distributed variables are much better on the basis of the criteria. The OLS estimator remains the most 
efficient and the combined estimators compete favorably with the estimator (OLS) especially when the sample size 
is large. The combined estimators are frequently more efficient than their separate counterpart estimator, 
asymptotically equivalent and best in terms of their goodness-of-statistics estimates. Thus, the combined estimators 
have the advantage of being used better for prediction.  Numerical example supports findings. 

Keywords: OLS Estimator; Combined Estimator; Sampling Properties; Goodness –of – fit Statistics. 

1. Introduction 

The Ordinary Least Square (OLS) estimator developed several years ago is a well known estimator for parameter 
estimation of the Classical Linear Regression Model. When the assumptions of the model are intact, the estimator is 
Best Linear Unbiased Estimator (BLUE) and computationally simple to use [1, 2, 3, 4.].Among these assumptions 
are the assumptions that regressors and error terms being assumed to be independent. 

The violation of the assumption of independence of regressors leads to multicollinearity while that of error terms 
results into autocorrelation. Various estimation methods have separately been developed to tackle these problems. 
Estimators which include the Ridge Regression estimator developed by Hoerl [5] and Hoerl and Kennard [6], Estim-  
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tor based on Principal Component Regression suggested by Massy [7], Marquardt [8] and method of Partial Least 
Squares developed by Hermon Wold in the 1960s [9,10, 11] are either developed or adopted to tackle the problem of 
multicollinearity. Furthermore, in order to compensate for the lost of efficiency which the OLS estimator often 
provides when used to analysis data with autocorrelated error terms, several Feasible Generalized Linear Estimators 
which include estimator provided by Cochrane and Orcutt [12], Paris and Winstern [13], Hildreth and Lu [14], 
Durbin [15], Theil [16], Beach and Mackinnon [17], and Thornton [18] have also been developed. 

The problem of joint existence of multicollinearity and autocorrelation in a data set leads to the development of 
combined estimators whose performances are being examined and compared with the OLS estimator in this paper. 
The model is formulated to ensure complete compliance with the assumption of the classical linear regression model 
for easy of comparison. 

2. Materials and Methods 

Consider the linear regression model of the form: 

ttttt UXXXY ++++= 3322110 ββββ                                             (1) 

Where ttt UU ερ += −1 , ),0(~ 2σε Nt , t = 1, 2, 3,...n  

The autocorrelation parameter, ρ , in the model  is set at zero to ensure compliance with the classical linear 
regression model in order to ensure comparison of the estimators . The technique adopted for the development of the 
combined estimator is very much similar to that of the Principal Component Estimator when used to solve 
multicollinerarity problem. Just like the Principal Component does its estimation using the OLS estimator by 
regressesing the extracted components (PCs) on the standardized dependent variable, the combined estimators use 
the FGLS estimator which include the Cochrane and Orcutt (CORC) estimator [12] and the Maximum Likelihood 
(ML) estimator [13]. Unlike the OLS estimator which results back into the OLS estimator when all the PCs are used, 
advantageously, since the FGLS estimators require an iterative methodology for its estimation, the proposed 
combined estimators can use all the possible PCs, the number of which is the same as the number of regressors, for 
its estimation and may not result back into the FGLS feasible estimators. The PCs are the extracted components of 
the X matrix of the regressors. They are orthogonal and hence, the validity of non-dependence of the regressors 
assumption is ensured. Consequently, the parameters of (1) are estimated by the following eleven (11) estimators: 
OLS, CORC, ML, Principal Components (PC1, PC12), CORC+PC1, CORC+PC12, CORC+PC123, ML+PC1, 
ML+PC12 and ML+PC123 estimators.  

For the Monte-Carlo simulation study, two types of regessors namely,  )1,0(~ NXi  and )1,0(~ UXi were 
used.  The parameters of equation (1) were specified and fixed asβ0 = 4, β1 = 2.5, β2 = 1.8 and β3 = 0.6. Furthermore, 
the experiment was replicated in 1000 times (R =1000) under eight (8) levels of sample sizes (n =10, 20, 30, 50, 
100, 200, 250 and 500).  The estimators were evaluated and compared using the finite properties of estimators’ 

criteria and the goodness – of –fit statistics.  Mathematically, for any estimator
^

iβ  of iβ  i = 0, 1,2,3 the finite 
sampling properties used which are Absolute Bias (AB) and the Mean Square Error (MSE) are defined as follows: 
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Also, the goodness-of-fit statistics used is the Adjusted Coefficient of Variation. The Adjusted Coefficient of 
Determination of the model was averaged over the numbers of replications. i.e.   

       ∑
=

=
R

i
iAdjR

R
R

1

2
)(

_ 1

                                                                                          
(4) 

In order to examine the pattern of the number of occurrence of the Adjusted coefficient of Determination, its 
frequency distribution were obtained as follows: ,25.02

. <AdjR

,

,5.025.0 2
. <≤ AdjR ,75.05.0 2

. <≤ AdjR

2
.0.75 1.AdjR≤ < For all these estimators, a computer program was written using Time Series Processor [19] 

software to evaluate the Absolute Bias, Mean Square Error, and Average Adjusted coefficient of Determination and 
its frequency distribution. An estimator is best in terms of Absolute Bias and most efficient in terms of Mean Square 
Error if its value is the minimum. An estimator is best in terms of estimate of goodness-of-fits if its Adjusted 
Coefficient of Determination is closest to unity. All these were done by written a computer program using the Time 
Series Processor (TSP) software [19]. 

3. Results and Conclusion 

Out of all the estimators, the results of the best six (6) are presented and discussed using the criteria outlined earlier. 
These estimators are OLS, CORC, ML, PC12, CORC+PC123 and ML+PC123. 

3.1 The Absolute Bias Criterion 

The results on the basis of absolute bias of the estimators using normally distributed regressors are summarized in 
Table 1 while that of uniformly distributed regressors are graphically summarized in Figure 1. 

Table 1: The Absolute Bias of the Estimators with normally distributed regressors at different levels of sample size 

n Estimator B0 B1 B2 B3 n B0 B1 B2 B3 
 
 

1
0 

OLS 
CORC 

ML 
PC12 

CORC+PC123 
ML+PC123 

.270780 
3.52577 
.293840 
.270800 
.285130 
.274860 

.316720 

.416600 

.352090 

.337400 

.393250 

.348280 

.272230 

.337370 

.332430 
1.38307 
.335650 
.329270 

.233600 

.349140 

.265460 
1.12897 
.319440 
.264470 

 
 
1 
0 
0 

.084187 

.084078 

.084138 

.109290 

.084162 

.084191 

.083918 

.084837 

.084757 

.087985 

.084836 

.084757 

.077697 

.079278 

.079018 
1.24839 
.079275 
.079018 

.074691 

.075532 

.074612 
1.20161 
.075518 
.074612 

 
 

2
0 

OLS 
CORC 

ML 
PC12 

CORC+PC123 
MLPC123 

.187740 

.214380 

.191740 

.310110 

.194080 

.189760 

.186070 

.200740 

.195360 
1.08392 
.199650 
.195160 

.187990 

.243820 

.203250 

.642150 

.238870 

.202790 

.215530 

.226050 

.223130 
1.40518 
.225350 
.222900 

 
 
2
0
0 

.057799 

.057825 

.057837 

.059498 

.057830 

.057829 

.058331 

.058466 

.058446 

.446320 

.058465 

.058446 

.055713 

.056183 

.056086 

.405590 

.056182 

.056086 

.053371 

.053401 

.053420 

.072946 

.053401 

.053420 
 
 

3
0 

OLS 
CORC 

ML 
PC12 

CORC+PC123 
MLPC123 

.153490 

.158030 

.153830 

.255730 

.153800 

.153670 

.149710 

.154660 

.154650 
1.93013 
.154640 
.154620 

.202110 

.209810 

.208490 
2.55778 
.209690 
.208450 

.144300 

.148270 

.147950 

.144400 

.148230 

.147940 

 
 
2
5
0 

.051443 

.051733 

.051439 

.137770 

.051467 

.051444 

.050892 

.051460 

.051435 
1.95705 
.051459 
.051435 

.049919 

.050513 

.050349 
1.74692 
.050512 
.050349 

.048572 

.048941 

.048868 

.819080 

.048940 

.048868 
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5
0 

OLS 
CORC 

ML 
PC12 

CORC+PC123 
MLPC123 

.114310 

.116190 

.114580 

.114180 

.114460 

.114460 

.120310 

.123270 

.123370 

.114760 

.123250 

.123360 

.114120 

.115940 

.115940 

.086546 

.115940 

.115940 

.111830 

.113990 

.113950 

.079869 

.113980 

.113950 

 
 
5
0
0 

.035125 

.035246 

.035147 

.042738 

.035148 

.035138 

.035351 

.035612 

.035583 

.637030 

.035612 

.035583 

.035613 

.035755 

.035722 

.576800 

.035755 

.035722 

.037140 

.037412 

.037299 

.484020 

.037412 

.037299 

From Table 1 and Figure 1, it can be seen that apart from PC12 estimator as the sample size increases the 
estimators’ performances are better and much better with normally distributed regressors. The OLS estimator is 
often best even though all other estimators except the PC12 estimator perform equally well especially when the 
sample size is large.  At small sample sizes, the combined estimators are less biased than their separate counterparts.  
Summarily, apart from PC12, all the estimators are asymptotically equivalent with the absolute bias criterion.  

Figure 1: Absolute Bias of the Estimators with normally distributed regressors at different levels of sample size 

 

3.2 The Mean Square Error Criterion 

The results of Mean Square Error of the estimators using normally distributed regressors are summarized in Table 2 
while that of uniformly distributed regressors are graphically summarized in Figure 2.  From Table 2 and Figure 2, it 
can be observed that apart from the PC12 estimator as the sample size increases the performances of the estimators 
except that of PC12 are better and much better with normally distributed regressors. The OLS estimator remains the 
most efficient even though all other estimators except the PC12 estimator perform equally well especially when the 
sample size is large.  The combined estimators are frequently more efficient than their separate counterparts. 
Summarily, apart from PC12, all the estimators are asymptotically equivalent under the mean square error criterion.    

Table 2: The Mean Square Error of the Estimators with normally distributed regressors at different levels of sample 
 size 
 
n Estimator B0 B1   B2 B3 n B0 B1   B2 B3 
 
 

1
0 

OLS 
CORC 

ML 
PC12 

CORC+PC123 
ML+PC123 

.114220 
943.580 
.137720 
.114330 
.127700 
.119190 

.156860 

.270660 

.193970 

.179330 

.241190 

.189700 

.115520 

.175050 

.170900 
1.94214 
.174440 
.167660 

.086792 

.185280 

.113240 
1.30159 
.154230 
.112350 

 
 

1
0
0 

.010880 

.010870 

.010874 

.018166 

.010880 

.010889 

.011168 

.011416 

.011400 

.012363 

.011416 

.011400 

.009413 

.009768 

.009739 
1.56238 
.009768 
.009739 

.008838 

.008975 

.008841 
1.44776 
.008973 
.008841 

 
 

2
0 

OLS 
CORC 

ML 
PC12 

CORC+PC123 

.054546 

.071430 

.057257 

.134490 

.058134 

.054806 

.063352 

.060113 
1.20388 
.062627 

.055307 

.092801 

.065291 

.456510 

.088790 

.072629 

.079128 

.077129 
2.00030 
.078634 

 
 

2
0
0 

.005204 

.005218 

.005210 

.005525 

.005209 

.005396 

.005404 

.005398 

.201420 

.005404 

.004806 

.004863 

.004859 

.166940 

.004862 

.004366 

.004401 

.004399 

.007928 

.004401 
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ML+PC123 .055963 .059997 .064962 .076989 .005209 .005398 .004859 .004399 
 
 

3
0 

OLS 
CORC 

ML 
PC12 

CORC+PC123 
ML+PC123 

.037200 

.039482 

.037244 

.091811 

.037303 

.037202 

.035282 

.037640 

.037568 
3.73669 
.037629 
.037553 

.064677 

.069025 

.068432 
6.56203 
.068962 
.068411 

.033006 

.034951 

.034685 

.033052 

.034932 

.034679 

 
 

2
5
0 

.004238 

.004295 

.004240 

.022891 

.004247 

.004242 

.004073 

.004137 

.004132 
3.83194 
.004137 
.004132 

.003874 

.003933 

.003908 
3.05396 
.003933 
.003908 

.003688 

.003765 

.003748 

.674230 

.003765 

.003748 
 
 

5
0 

OLS 
CORC 

ML 
PC12 

CORC+PC123 
ML+PC123 

.020846 

.021493 

.020904 

.020821 

.020891 

.020894 

.023149 

.024316 

.024256 

.021345 

.024309 

.024253 

.020496 

.021028 

.021035 

.011720 

.021027 

.021033 

.019290 

.020214 

.020180 

.009935 

.020210 

.020178 

 
 

5
0
0 

.001994 

.002006 

.001996 

.002859 

.001996 

.001995 

.002009 

.002040 

.002037 

.406790 

.002040 

.002037 

.002039 

.002060 

.002054 

.334070 

.002060 

.002054 

.002124 

.002150 

.002138 

.235810 

.002150 

.002138 
 
Figure 2: Mean Square Error of the Estimators with normally distributed regressors at different levels of sample 
 size 
 

 
 

3.3 Estimate of Goodness–of-fit Statistics (Average Adjusted Coefficient of Determination) 

The average coefficient of determination of the estimators and the frequency of their occurrences as earlier 
mentioned are shown in Table 3 for the normally distributed regressors while that of uniformly regressors are 
graphically represented in Figure 3. From these representations, the estimates of the goodness-of-fit statistics of all 
the estimators are much better with normal regressors than the uniform. Apart from PC12 estimator, all other 
estimators with the explanatory variables account for more than 85% variation of the response variable in the former 
while ML+PC123 and CORC+PC123 are best in the latter  with  around 50% of variation of the response variable 
being accounted for when the sample size is small.  

This is further buttressed with the fact that almost all (1000 replications) the estimated adjusted coefficient of 
determinations is greater than 0.75 using normally distributed regressors. Figure 4 further reveals that the adjusted 
coefficient of determination of the estimators (except PC12) with uniformly distributed regessors are most frequent 
between 0.25 and 0.5. Summarily, at each level of sample size, the estimates of the combined estimator are often the 
best and even that of their separate counterpart, except the PC12, are still better than that of the OLS estimator.  
Moreover, their estimates are asymptotically the same.  
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Table 3:Average Adjusted Coefficient of Determination of the Estimators and the Frequency Distribution of their 
 Occurrences 
 

 
 
 
 
n 

 
 
 
 

Estimator 

 
A 
V 
E 
R 
A 
G 
E 

FREQUENCY  OF 
OCCURENCES 

 
 
 
 

n 

A 
V 
E 
R 
A 
G 
E 

FREQUENCY  OF 
OCCURENCES 

 

25.0

2
.

<
AdjR

 

5.0

25.0

2
.

<

≤

AdjR

 75.0

5.0

2
.

<

≤

AdjR  

1

75.0

2
.

<

≤

AdjR  

 

25.0

2
.

<
AdjR

 5.0

25.0

2
.

<

≤

AdjR

 75.0

5.0

2
.

<

≤

AdjR  

1

75.0

2
.

<

≤

AdjR  

 
 
1
0 

OLS 
CORC 

ML 
PC12 

CORC+PC123 
ML+PC123 

.853340 

.875870 

.864440 

.517250 

.899280 

.886120 

0 
0 
0 

21 
0 
0 

2 
5 
3 

418 
2 
0 

114 
88 
98 
525 
46 
55 

884 
907 
899 
36 
952 
945 

 
 

1
0
0 

.89800 

.89891 

.89804 

.60747 

.89997 

.89910 

0 
0 
0 
0 
0 
0 

0 
0 
0 
1 
0 
0 

.00 

.00 

.00 
999 
.00 
.00 

1000 
1000 
1000 

0 
1000 
1000 

 
 
2
0 

OLS 
CORC 

ML 
PC12 

CORC+PC123 
ML+PC123 

.914300 

.914310 

.914790 

.728280 

.920000 

.920080 

0 
0 
0 
0 
0 
0 

0 
0 
0 
1 
0 
0 

0 
1 
0 

625 
0 
0 

1000 
999 

1000 
374 

1000 
1000 

 
 

2
0
0 

.91714 

.91751 

.91713 

.88902 

.91794 

.91756 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

1000 
1000 
1000 
1000 
1000 
1000 

 
 
3
0 

OLS 
CORC 

ML 
PC12 

CORC+PC123 
ML+PC123 

.868930 

.873170 

.869280 

.161020 

.878240 

.874300 

0 
0 
0 

932 
0 
0 

0 
0 
0 

68 
0 
0 

5 
4 
6 
0 
3 
4 

995 
996 
994 
.00 
997 
996 

 
 

2
5
0 

.90918 

.90917 

.90917 

.22194 

.90954 

.90954 

0 
0 
0 

961 
0 
0 

0 
0 
0 

39 
0 
0 

0 
0 
0 
0 
0 
0 

1000 
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1000 

0 
1000 
1000. 

 
 
5
0 

OLS 
CORC 

ML 
PC12 

CORC+PC123 
ML+PC123 

.908700 

.910390 

.908790 

.910060 

.912380 

.910770 

0 
0 
0 
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0 
0 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
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5
0
0 

.91403 

.91415 

.91404 

.83528 

.91433 

.91421 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
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1000 
1000 
1000 
1000 

 
Figure 3:Average Adjusted Coefficient of Determination of the Estimators with  uniformly distributed regressors 
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Figure 4:Percentage of frequency of occurrences of the Estimators with uniformly distributed regressors. 
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3.4 A Numerical Example 

Macroeconomic data set comprising of fifteen (15) observations used by Greene [20] to illustrate the computations 
in a multiple regression using the OLS estimator is also used below to illustrate the findings on the combined 
estimators. The results are provided in Table 4. 

Table 4:Summary of results on the Macroeconomic data provided by Greene [20] 

 Estimators 
0

^
β  1

^
β  2

^
β  3

^
β  4

^
β  

2
.AdjR  

OLS -0.5099 
(0.055) 

-0.0166 
(0.0020) 

0.6718 
(0.0552) 

-0.0023 
(0.0012) 

-0.0003 
(0.0012) 

0.9616 

PC1 0.0921 0.0017 0.0462 0.0025 0.0030 0.5701 
PC12 0.0805 0.0027 0.0736 0.0023 -0.0016 0.5909 
PC123 0.0567 0.0037 0.1029 -0.0027 0.0007 0.6169 
CORC -0.5173 

(0.0394) 
-0.0174 
(0.0016) 

0.6823 
(0.0395) 

-0.0018 
(0.0009) 

-0.0006 
(0.0009) 

0.9666 

CORC+PC1 0.1081 0.0014 0.0396 0.0021 0.0026 0.5679 
CORC+PC12 0.0892 0.0023 0.0644 0.0022 -0.00063 0.5645 
CORC+PC123 0.0602 0.0034 0.0957 -0.0020 0.0011 0.5443 
CORC+PC1234 -0.5167 -0.0173 0.6807 -0.0018 -0.0005 0.9702 
ML -0.5004 

(0.0428) 
-0.0162 
(0.0016) 

0.6639 
(0.0423) 

-0.0023 
(0.0008) 

-0.0005 
(0.0010) 

0.9581 

ML+PC1 0.0975 0.0016 0.0439 0.0024 0.0029 0.6128 
ML+PC12 0.0830 0.0025 0.0679 0.0024 -0.0007 0.6176 
ML+PC123 0.0612 0.0034 0.0953 -0.0020 0.0011 0.6057 
ML+PC1234 -0.5010 -0.0163 0.6643 -0.0023 -0.0005 0.9623 

  
NOTE: The standard error of the regression coefficient estimate is in the parenthesis. 

Table 4 clearly shows the CORC, ML, CORC+PC1234 and ML+PC1234 compete very well with the OLS 
estimator. In fact, none of the separate estimators of the combined estimators produces a better result than the 
combined estimators with the highest number of principal components in terms of their goodness –of – statistics. It 
can also be seen that combined estimators with number of component less than the number of predictors do not 
perform well. This actually buttresses the fact emphasized easier that led to the selection of estimators presented in 
the simulation study.       

4. Conclusion 

This study has combined two Feasible Generalized Estimators with the Estimator based on Principal component 
Analysis and compared the performances of estimators with that of the OLS estimator. The combined estimators 
perform equally well and compete favourably with OLS estimator in terms of efficiency especially when the sample 
size is large. Moreover, the goodness-of-fit statistics of the combined estimator are often better than that of the OLS 
estimator. Thus, the estimators have the advantage of being used when regression analysis is focused on prediction.    
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