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Abstract 

This paper presents the development and validation of a robust flight dynamics model for simulation of a full-

scale single-rotor helicopter dynamics and maneuvering. A minimum-complexity dynamic model is used to 

compute the aerodynamic forces and moments using trajectory-planning strategy. A high-order sliding mode 

(HOSM) observer is used as a numerical differentiator for computing time rate changes of longitudinal and 

lateral control inputs to the main rotor dynamics during maneuvering. The HOSM differentiator suppresses 

numerical instability and increases computation accuracy of both dynamic and kinematic characteristics. Using 

available data and flight test results for UH-60 helicopter, the control input characteristics are interpolated 

versus flight speeds. A pull-up maneuver is simulated to demonstrate the effectiveness of the proposed model. 

Keywords: Helicopter dynamics; Helicopter maneuvering; High-order sliding mode observer; Model-based 

motion simulation; Single-rotor helicopter; UH-60 helicopter. 

1. Introduction  

Helicopter dynamics analysis and motion simulation require a consistent dynamic model that would mimic the 

airframe behavior in response to control inputs. Dynamic modeling of flying vehicles is a central element in the 

design of flight control systems (FCSs) and motion equations constitute one of the main building blocks of the 

stability and control loop.  
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Over the last decades, an increasable effort has been done towards developing model-based helicopter FCSs [1-

7] and several successful attempts have been made to design model-based helicopter motion simulators [8-13]. 

The motivation behind this trend is to achieve an accurate dynamics simulation and design enhanced FCSs.  

Achievement of multirole missions or flying in adverse conditions demand accomplishment of advanced flight 

modes, which requires high-fidelity dynamic model for flying qualities assessment. Such modes include vertical 

take-off and landing, rate command, transitional rate command, and attitude command–attitude hold [14,15]. 

Flying at extreme conditions such as high rotary speed can result in unpleasant aerodynamic and structural 

implications such as flutter, swing, dynamic stall, and shock wave [16-22].  The aforementioned issues render 

the modeling of full-scale helicopter dynamics more challenging and requiring not only appropriate modeling 

methodologies but also advanced numeric techniques to unsure the robustness, improve the effectiveness, and 

reduce the computational cost of the formulated models. Many existing models use complex expressions of 

aerodynamic characteristics and coefficients with huge number of parameters and solve differential equations 

via conventional numerical methods [23-31]. This usually yields inflexibility, delays, high-cost computations, 

and numerical instabilities that would result in serious control design issues, restrained handling qualities, and 

restricted of applicability. To provide concise, robust, and low-cost computation dynamic model, a suitable 

modeling framework is developed in this paper. The framework integrates the minimum-complexity model 

(MCM) for a single-rotor helicopter developed by NASA [32] and high-order sliding mode (HOSM) 

differentiator. The MCM incorporates all the forces and moments contributions from the airframe parts, assumes 

rigid rotor blades, and uses simplified aerodynamic curves. The HOSM differentiator uses the concept of virtual 

relative degree to achieve high-precision numerical integration [33].  The rest of the paper is organized as 

follows. Section 2 presents the modeling of a full-scale single-rotor helicopter kinematics and dynamics using 

the decomposition approach. In section 3, the control system is described, control input channels are 

interpolated as function of flight speeds from available real-time tests, and numerical integration via classical 

and modern algorithms is illustrated. In order to validate the model and show its effectiveness, a pull-up 

maneuver is simulated in section 4 where non-windy and windy flights are considered. Section 5 gives 

conclusion and recommendation for the presented work. 

2. Helicopter Nonlinear Dynamics Modelling  

The helicopter dynamics are formulated by considering that the airframe is a fully articulated rotors system with 

rigid blades having only the flap degree-of-freedom.  

2.1 Helicopter Nonlinear Dynamics 

In an inertial-axis system *     +with x-z-plane of symmetry, a six-degree equations of motion model is 

presented in this section. With       being helicopter airframe inertial positions and, 

 (    )  (     ),  (   )its attitudes, the nonlinear model of the single-rotor helicopter system is given as 

follows. 

Force equations 
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Navigation equations 
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Euler rotations 
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where     and     denote sine and cosine functions, respectively. In the body-axes reference system,       

denote the aerodynamics forces; L,M,N denote the aerodynamic moments; u,v,w, denote the translation 

velocities;  p,q,r denote the roll, pitch, and yaw angular rates;  ̇   ̇  ̇ denote the inertial linear velocities and g is 

the gravitational force. 

2.2 Total Helicopter Forces and Moments 

The total forces   ,       -  and moments    ,       -  acting on the helicopter airframe are computed 

by summing the forces and moments from its main components as follows, 

mr tr w fus ht vt      f f f f f f f                                                                                   (5) 
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mr mr mr tr tr w w ht ht vt vt          m m f R f R f R f R f R                                                    (6) 

with the subscripts „mr‟, „tr‟, „w’, „fus’, „ht‟, and „vt‟ denote the main rotor, tail rotor, wing, fuselage, horizontal 

tail, and vertical tail, respectively. Neglecting the effect of the rotor downwash, the contribution of the different 

components are given, in simplified forms, as follows. 

2.2.1 Main rotor 
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with long, lat being the longitudinal and lateral tip-path-plane angles, respectively; dhub, hhub, are the dimeter and 

vertical position of the hub, respectively; Smr denotes lumped flapping stiffness, mr denotes rotor torque, u is 

the x-axis airspeed,  is the density, and Ls denotes the lift slope. 

2.2.2 Tail rotor 
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The main-rotor and tail-rotor thrusts are computer by iteration using the following expressions 

2

4
mr mr s,mr b,mr mrT r L N c u u


                                                                                      (11) 

 21

4
tr tr s ,t r b,t r tr tr trb i ,trT r L N c v V                                                                             (12) 

where rmr, cmr , Nb,mr denote the radius, chord, and number of blades, of the main rotor, respectively. rtr, ctr , Nb,tr 

denote the radius, chord, and number of blades, respectively. Ls,mr and Ls,tr are the blade lift curve slopes for the 

main rotor and tail rotor. vtrb and Vi,tr denote the y-axis velocity relative to tail rotor blade and the tail rotor 

induced velocity and tr is the tail rotor angular rate. 
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2.2.3 Fuselage 
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where Cdx,f, Cdy,f, Cdz,f denote the fuselage quadratic drag coefficient along x-, y- and z-axis respectively; Df  and 

hf  are the fuselage horizontal and vertical positions of the aerodynamic center, and Vi,mr is the main rotor 

induced velocity.  

2.2.4 Wing 
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where Cr,w, Cc,w, being the wing camber-incidence effect, and the horizontal tail circulation effect, respectively; ; 

Dw  and hw  are the wing horizontal and vertical cg positions, respectively. 

2.2.5 Horizontal and Vertical tails 
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with Cr,ht, Cc,ht, being the horizontal tail camber-incidence effect, and the horizontal tail circulation effect, 

respectively; Dht  is the horizontal tail „cg‟ x-axis position. 
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Cr,vt, Cc,vt, are the vertical tail camber-incidence effect, and the verticaltail circulation effect, respectively;  Dht  is 

the vertical tail cg x-axis position. 

2.3 Load factor  

The load factor   of the a helicopter airframe is expressed in terms of linear velocities and accelerations 

measured in the inertial reference. Three forms of the factor   can be measured as follows [34] 
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where     ,   ,    denote the flight path, tangential, and normal (lateral) load factors, respectively. The normal 

load factor is a measure of the vertical acceleration. 

3.  Control System Design 

3.1 Helicopter control system description  

It is well known that a standard helicopter airframe is practically controlled though its rotor system that consists 

of main and tail rotors as shown in Figure1. The first rotor generates trust (lift) and translational control while 

the second one ensures heading control (see Figure 1). 
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Figure 1: Helicopter rotor system configuration [35] 

Hovering, forward flight, and autorotation are the main flight conditions of a helicopter system. To control these 

flight conditions, a typical flight control system combines four main physical control inputs to achieve different 

desirable motion modes i.e. collective stick, longitudinal and lateral cyclic sticks, throttle, and directional 

pedals. Figure2 shows the different controls of a single-rotor helicopter. 

 

 

(e) 

Figure 2: General configuration of a single rotor helicopter flight control system [36] 
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 Collective pitch control: the collective pitch control (CPC) is much more consistent rather than fixed 

pitch control (FPC) for mid and full size helicopter airframes. CPC is used to control the helicopter 

airframe at constant speed with variable angle-of-attack (AOA), produce more lift, get very precise and 

immediate control, perform inverted flight, and get better wind handling immunity. Figure 2a shows 

the control of the thrust through variation of the collective pitch of the main-rotor blades. 

 Cyclic pitch control: Cyclic pitch control, often called stick-by-pilot (SBP), is used to change 

helicopter attitude and airspeed. SBP relieves the helicopter from changing torque spikes and allows 

avoiding large correction of rotors‟ speed usually needed in FPC. The longitudinal cyclic control 

shown in Figure 2b is used to pitch the rotor tip-path plane up or down causing forwards and 

backwards tilting of the thrust vector in the longitudinal plane. However, the lateral cyclic control 

shown in Figure 2c rolls the path plane causing right and left tilting of the thrust vector in the lateral 

plane. 

 Tail rotor control: Tail rotor control (TRC) or anti-torque pedals are used to increase/decrease the pitch 

of the tail rotor blades. It also helps compensating for reaction torque produced by the blades‟ drag or 

induced by the main rotor. As shown in Figure 2d, the TRC mode is used to control the yaw motion by 

changing the pitch of the tail rotor blades, which produces change in the magnitude of the balancing 

torque. 

 Engine Throttle Control: Engine throttle (ETC) provides the power of helicopter engine. A 

combination between CPC and ETC is done through an electronic governor to raise the collective pitch 

lever and increase the pitch. 

In terms of input/output, CPC, SBP, TRC, and TRC are the primary control inputs for altitude (all up and all 

down), attitude (bank left or right, and move forward or aft), heading, and rotor RPM, respectively. Both CPC 

and ETC are considered as control inputs to the primary force generating rotors. The CPC and TRC are used as 

control inputs to the primary moment generating rotors. Table 1 lists the aerodynamic control inputs to the 

helicopter dynamics and shows their corresponding aerodynamic loads [35] 

Table 1: Cockpit controls and control phasing 

Control Symbol Reference Control axis Load 

Collective Pitch     Full down Heave Control (Up) +M 

Longitudinal cyclic     Centered Full-forward Pitch control (Aft) +L 

Lateral cyclic     Centered Full-left Roll control (Right) -Z 

Directional pedals     Centered Full-left Yaw control  +N 

3.2 Helicopter control modelling  

The four main control inputs described in Table 1 have been subject to many investigations where different sort 
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of models have been proposed such as in [35,37]. In this paper, we use an interpolation model that relates the 

helicopter control inputs to the airframe forward speed V.  Using the available data for the UH-60A [37], the 

following polynomial relationships were obtained 
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The interpolation variance    and root mean square error   are as follows 
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Figure 3 shows the change of the UH-60A helicopter control inputs with respect to its flying velocity. 

 

 

Figure 3: UH-90A control inputs interpolation 

The longitudinal and lateral tip-path-plane angles       and      affect directly the main rotor forces and 

moments as shown in equations (5) and (6). Both angles are computed using the following differential models 
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where long, lat are the longitudinal and lateral swashplate angles, respectively;  is the lateral flapping and r is 

the rotor angular rate;   and   are the forward and side components of the velocity vector. 

 

 

 

2

2 2

3 8
1 2

2 3

i ,mrmr

mr mrmr mr mr mr

w Vu
,            

u v v rr r

  

 

    
    

    

                                           (28) 

mr is the main rotor collective pitch angle. The lock number Nlock given as 

4
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I


                                                                         (29) 

with a is the slope of the 2D airfoil lift curve, c is the chord length, R is the rotor radius, and Ib is the flapping 

moment of inertia. 

3.3 Numerical Integration 

The numerical integration of the expressions (26) is usually performed using the classical two-step Adams-

Bashforth technique as shown in the following expression 

                 1 1

1 2 1 2

k k k k k k k k

long le lat at a H a H ,     t a S a S   
 

                                (30) 

where t denotes the sampling time and a1, a2 are numerical integration constants. 

The classical Adams-Bashforth integration scheme has shown numerical instability mainly at the presence of 

perturbations in the initial conditions or starting values  [38]. To build a stable solution to the helicopter 

dynamics problem, we propose the use of the following robust HOSM numerical differentiator [33]. 

 

1

1

11 1 1

0, , 1

,

   

k k

r k

r k
rk k k k k k k

k r      with r>1

v           with  v

v L v sign v
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




  

  

  

      










                                                  (31) 

where   ̇  (            )  denote the successive time derivatives of the measured signal, observed 

parameter, or the tracking error  .   denote the differentiator gains and   is a Lipschitz constant. The 
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coefficient   is the relative degree denoting the higher order time derivative of   being computed. According to 

the properties of the HOSM differentiator, at least     of the successive time derivatives are exact. According 

to the algorithm (31), the first and third order time derivatives of the signal   are given as follows. 

 

 

1

1

2 1 242 2 1 3

1

3 11 1 0 0 2      2

       3 

     for  r

L v sign v       for r

L v sign v 

       


    

 

 




                                                     (32) 

where    and     are computed using the algorithm (31). One of the advantages of the numerical HOSM 

differentiator is that the virtual increase of the relative order   yields high-accuracy calculation of the antecedent  

    time derivatives. 

4. Simulation 

To evaluate the effectiveness of the proposed control model, a pull-up maneuver scenario is simulated for UH-

60A helicopter using the available data in [39]. Pull-up maneuvering is one of the most important motion 

trajectories of a helicopter to avoid obstacles such as mountains as shown in Figure 4. 

 

Figure 4: A helicopter climbing a mountain [40] 

Figure 5 shows a simulated pull-up maneuver with initial forward speed of 46.3 m/s (90 kt) at 1000 m (3,280.85 

ft) altitude to avoid a mountain with a height of 2020 m (6627.3 ft).  

 

Figure 5: Simulated pull-up maneuver 
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The maneuver goal consists of reaching an altitude gain of 968 m (3175.85 ft) without exceeding a maximum 

normal load factor of        . It is worth noting that according to FAR PART 27 regulations [41], the normal 

load factor should not exceed a value of           in order to avoid any structural damage to the helicopter 

airframe or its components.Since the pull-up maneuver is performed with constant speed  , the airframe 

velocities vector is given, from equation (3), in the inertial axes as follows 

cos cos ,      cos sin ,     sine e ex V y V z V                                                        (33) 

Figure 6 and Figure 7 depict the time-history of the flight speed   (forward speed) and the normal and 

longitudinal load factors, respectively. Figure 8 and Figure 9 show the corresponding changes in the vertical 

aerodynamic z-axis force and pitch moment. 

 

Figure 6: Time-history of the forward speed decay 

 

a)                                                                           b) 

Figure 7: Load factors: a) tangential, b) normal 
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a) b) 

Figure 8: Aerodynamic z-axis force Fz: a) HOSM-based algorithm, b) Adamas-Bashforth algorithm, 

 

a) b) 

Figure 9: Aerodynamic pitch moment: a) HOSM differentiator, b) Adamas-Bashforth differentiator 

Table 2: Comparison study of windy and non-windy flights 

 HOSM 

algorithm ug=0 

A-B 

Algorithm 

HOSM 

algorithm ug0 

Vf 31.07 (m/s) 33.60 m(s) 18.16 (m/s) 

np,max 2.35 < 2.5 (g) 2.995 >2.5(g) 2.29 < 2.5(g) 

nt,max 0.11 (g) 0.134 (g) 0.18 

Tmax 8586 (N.m/s) 15,891(Nm/s) 11,457 (N.m/s) 

Fz,max 98683.80 (N) 17,851 (N) 11,0961 (N) 

Mmax 105,739 (N.m) 3,068.1 (N.m) 145,615 (N.m)  
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Table 2 summarizes the results of a comparison study between flight in windy and non-windy atmosphere. The 

non-windy simulation is performed for both HOSM-based and AB-based algorithms. The windy flight is 

simulated for HOSM-based algorithm with      ,                 -
      (      ) 

5. Conclusion 

In this paper, a dynamic model for helicopter dynamics and maneuverability simulation has been presented. Fist, 

a velocity-based control model was interpolated from exciting experimental data to compute the control inputs 

to the airframe dynamics as functions of the forward flight speed. Second, a dynamic model was built based 

upon the contributions of the main components of the vehicle in producing the necessary aerodynamic forces 

and moment. Due to the numeric instability of the two-step Adams-Bashforth integration algorithm, a high-

order sliding mode observer was used as a numerical differentiator to suppress instability and increase accuracy 

of computations. Simulation results obtained for a pull-up maneuver has shown the effectiveness of the 

proposed model in achieving mission requirements without overstressing the airframe.  

6. Recommendations 

Future work will focus on the design of the flight control system based upon the trajectory of the helicopter and 

its maneuvering. The developed motion-maneuvering model will be integrated in the control loop of full-scale 

helicopter for development of advanced flight control systems. 
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