Single-Rotor Helicopter Dynamics and Maneuvering Simulation

Belkacem Kada *

Department of Aerospace Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Email: bkada@kau.edu.sa

Abstract

This paper presents the development and validation of a robust flight dynamics model for simulation of a full-scale single-rotor helicopter dynamics and maneuvering. A minimum-complexity dynamic model is used to compute the aerodynamic forces and moments using trajectory-planning strategy. A high-order sliding mode (HOSM) observer is used as a numerical differentiator for computing time rate changes of longitudinal and lateral control inputs to the main rotor dynamics during maneuvering. The HOSM differentiator suppresses numerical instability and increases computation accuracy of both dynamic and kinematic characteristics. Using available data and flight test results for UH-60 helicopter, the control input characteristics are interpolated versus flight speeds. A pull-up maneuver is simulated to demonstrate the effectiveness of the proposed model.

Keywords: Helicopter dynamics; Helicopter maneuvering; High-order sliding mode observer; Model-based motion simulation; Single-rotor helicopter; UH-60 helicopter.

1. Introduction

Helicopter dynamics analysis and motion simulation require a consistent dynamic model that would mimic the airframe behavior in response to control inputs. Dynamic modeling of flying vehicles is a central element in the design of flight control systems (FCSs) and motion equations constitute one of the main building blocks of the stability and control loop.

* Corresponding author.
Over the last decades, an increasable effort has been done towards developing model-based helicopter FCSs [1-7] and several successful attempts have been made to design model-based helicopter motion simulators [8-13]. The motivation behind this trend is to achieve an accurate dynamics simulation and design enhanced FCSs. Achievement of multirole missions or flying in adverse conditions demand accomplishment of advanced flight modes, which requires high-fidelity dynamic model for flying qualities assessment. Such modes include vertical take-off and landing, rate command, transitional rate command, and attitude command–attitude hold [14,15]. Flying at extreme conditions such as high rotary speed can result in unpleasant aerodynamic and structural implications such as flutter, swing, dynamic stall, and shock wave [16-22]. The aforementioned issues render the modeling of full-scale helicopter dynamics more challenging and requiring not only appropriate modeling methodologies but also advanced numeric techniques to ensure the robustness, improve the effectiveness, and reduce the computational cost of the formulated models. Many existing models use complex expressions of aerodynamic characteristics and coefficients with huge number of parameters and solve differential equations via conventional numerical methods [23-31]. This usually yields inflexibility, delays, high-cost computations, and numerical instabilities that would result in serious control design issues, restrained handling qualities, and restricted of applicability. To provide concise, robust, and low-cost computation dynamic model, a suitable modeling framework is developed in this paper. The framework integrates the minimum-complexity model (MCM) for a single-rotor helicopter developed by NASA [32] and high-order sliding mode (HOSM) differentiator. The MCM incorporates all the forces and moments contributions from the airframe parts, assumes rigid rotor blades, and uses simplified aerodynamic curves. The HOSM differentiator uses the concept of virtual relative degree to achieve high-precision numerical integration [33]. The rest of the paper is organized as follows. Section 2 presents the modeling of a full-scale single-rotor helicopter kinematics and dynamics using the decomposition approach. In section 3, the control system is described, control input channels are interpolated as function of flight speeds from available real-time tests, and numerical integration via classical and modern algorithms is illustrated. In order to validate the model and show its effectiveness, a pull-up maneuver is simulated in section 4 where non-windy and windy flights are considered. Section 5 gives conclusion and recommendation for the presented work.

2. Helicopter Nonlinear Dynamics Modelling

The helicopter dynamics are formulated by considering that the airframe is a fully articulated rotors system with rigid blades having only the flap degree-of-freedom.

2.1 Helicopter Nonlinear Dynamics

In an inertial-axis system \(\{x, y, z\} \) with \(x-z \)-plane of symmetry, a six-degree equations of motion model is presented in this section. With \(x, y, z \) being helicopter airframe inertial positions and, \(\phi(\text{roll}), \theta(\text{pitch}), \psi(\text{yaw}) \) its attitudes, the nonlinear model of the single-rotor helicopter system is given as follows.

\[\text{Force equations} \]
\[
\begin{align*}
\dot{\mathbf{u}} &= \left[\begin{array}{c} wq - vr \\ ur - wp \\ vp - uq \end{array} \right] = g \left[\begin{array}{c} \sin \theta \\ \cos \theta \sin \varphi \\ \cos \theta \cos \varphi \end{array} \right] + \frac{1}{m} \left[\begin{array}{c} X \\ Y \\ Z \end{array} \right] \\
\dot{\mathbf{v}} &= \left[\begin{array}{c} \sin \theta \sin \varphi \\ \cos \theta \sin \varphi \end{array} \right] \\
\dot{\mathbf{w}} &= \left[\begin{array}{c} \cos \theta \sin \varphi \\ \cos \theta \cos \varphi \end{array} \right]
\end{align*}
\] (1)

\textbf{Moment equations}

\[
\begin{align*}
\mathbf{\dot{p}} &= \left[\begin{array}{c} I_{xx} \dot{L} + I_{xx}N' \end{array} \right] \mathbf{1} \left[I_{xx} \right] - I_{xx}^2 \\
\mathbf{\dot{q}} &= M + \left[I_{xx} - I_{xx} \right] \mathbf{1} \left[r \right] - I_{xx}^2 \\
\mathbf{\dot{r}} &= \left[I_{xx} \dot{L} + I_{xx}N' \end{array} \right] \mathbf{1} \left[I_{xx} \right] - I_{xx}^2 \\
\end{align*}
\] (2)

with

\[
\begin{align*}
\dot{L} &= L + \left(I_{yy} - I_{zz} \right) q + I_{zz} p \\
N' &= N + \left(I_{xx} - I_{yy} \right) pq - I_{yy} q \\
\end{align*}
\]

\textbf{Navigation equations}

\[
\begin{align*}
\dot{x} &= u \cos \theta \cos \varphi + v \left(S \phi \cos \theta \cos \varphi - C \phi \sin \varphi \right) + w \left(C \phi \cos \theta \cos \varphi + S \phi \sin \varphi \right) \\
\dot{y} &= u \cos \theta \sin \varphi + v \left(S \phi \cos \theta \sin \varphi + C \phi \cos \varphi \right) + w \left(C \phi \cos \theta \sin \varphi - S \phi \cos \varphi \right) \\
\dot{h} &= u \sin \theta - v \phi \cos \varphi + w \phi \sin \varphi \\
\end{align*}
\] (3)

\textbf{Euler rotations}

\[
\begin{align*}
\phi &= p + \tan \theta \left(q \phi + r \phi \right) \\
\theta &= q \phi - r \phi \\
\psi &= \left(q \phi + r \cos \phi \right) / \cos \theta \\
\end{align*}
\] (4)

where ‘S’ and ‘C’ denote sine and cosine functions, respectively. In the body-axes reference system, \(X, Y, Z\) denote the aerodynamics forces; \(L,M,N\) denote the aerodynamic moments; \(u,v,w\), denote the translation velocities; \(p,q,r\) denote the roll, pitch, and yaw angular rates; \(\dot{x}, \dot{y}, \dot{z}\) denote the inertial linear velocities and \(g\) is the gravitational force.

\subsection*{2.2 Total Helicopter Forces and Moments}

The total forces \(\mathbf{f} = [X \ Y \ Z]^T\) and moments \(\mathbf{m} = [L \ M \ N]^T\) acting on the helicopter airframe are computed by summing the forces and moments from its main components as follows,

\[
\mathbf{f} = \mathbf{f}_{\text{air}} + \mathbf{f}_{\text{ru}} + \mathbf{f}_{\text{fu}} + \mathbf{f}_{\text{fs}} + \mathbf{f}_{\text{fl}} + \mathbf{f}_{\text{sw}}
\] (5)
\[m = m_{mr} + f_{mr} \times R_{mr} + f_n \times R_n + f_{fs} \times R_{fs} + f_{ht} \times R_{ht} + f_{vt} \times R_{vt} \]

with the subscripts ‘mr’, ‘tr’, ‘w’, ‘fus’, ‘ht’, and ‘vt’ denote the main rotor, tail rotor, wing, fuselage, horizontal tail, and vertical tail, respectively. Neglecting the effect of the rotor downwash, the contribution of the different components are given, in simplified forms, as follows.

2.2.1 Main rotor

\[f_{mr} = \begin{bmatrix} X_{mr} \\ Y_{mr} \\ Z_{mr} \end{bmatrix} = \begin{bmatrix} -T_{mr} \sin(\delta_{long}) \\ T_{mr} \sin(\delta_{lat}) \\ -T_{mr} \cos(\delta_{long}) \cos(\delta_{lat}) \end{bmatrix} \]

\[m_{mr} = \begin{bmatrix} L_{mr} \\ M_{mr} \\ N_{mr} \end{bmatrix} = \begin{bmatrix} Y_{mr} h_{hub} + S_{mr} \delta_{lat} \\ Z_{mr} d_{hub} - X_{mr} h_{hub} + S_{mr} \delta_{long} \\ -Y_{mr} d_{hub} + \tau_{mr} \end{bmatrix} \]

with \(\delta_{long}, \delta_{lat} \) being the longitudinal and lateral tip-path-plane angles, respectively; \(d_{hub}, h_{hub} \) are the diameter and vertical position of the hub, respectively; \(S_{mr} \) denotes lumped flapping stiffness, \(\tau_{mr} \) denotes rotor torque, \(u \) is the x-axis airspeed, \(\rho \) is the density, and \(L_s \) denotes the lift slope.

2.2.2 Tail rotor

\[f_{tr} = \begin{bmatrix} X_{tr} \\ Y_{tr} \\ Z_{tr} \end{bmatrix} = \begin{bmatrix} 0 \\ T_{tr} \\ 0 \end{bmatrix} \]

\[m_{tr} = \begin{bmatrix} L_{tr} \\ M_{tr} \\ N_{tr} \end{bmatrix} = \begin{bmatrix} Y_{tr} h_{tr} \\ -\tau_{tr} \\ -Y_{tr} d_{tr} \end{bmatrix} \]

The main-rotor and tail-rotor thrusts are computer by iteration using the following expressions

\[T_{mr} = \frac{\pi}{4} r_{mr}^2 \rho L_{s,mr} N_{b,mr} c_{mr} u \Delta u \]

\[T_{tr} = \frac{1}{4} \rho r_{tr}^2 L_{s,tr} N_{b,tr} c_{tr} \Omega \left(v_{vb} - V_{i,tr} \right) \]

where \(r_{mr}, c_{mr}, N_{b,mr} \) denote the radius, chord, and number of blades, of the main rotor, respectively. \(r_{tr}, c_{tr}, N_{b,tr} \) denote the radius, chord, and number of blades, respectively. \(L_{s,mr} \) and \(L_{s,tr} \) are the blade lift curve slopes for the main rotor and tail rotor. \(v_{vb} \) and \(V_{i,tr} \) denote the y-axis velocity relative to tail rotor blade and the tail rotor induced velocity and \(\Omega \) is the tail rotor angular rate.
2.2.3 Fuselage

\[
f_f = \begin{bmatrix} X_f \\ Y_f \\ Z_f \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \text{sign}(u) \rho C_{d_i,f} u^2 \\ \frac{1}{2} \text{sign}(v) \rho C_{d_j,f} v^2 \\ \frac{1}{2} \text{sign}(w-V_{i,mr}) \rho C_{d_k,f} (w-V_{i,mr})^2 \end{bmatrix}
\]

\[
m_f = \begin{bmatrix} L_f \\ M_f \\ N_f \end{bmatrix} = \begin{bmatrix} X_f h_f \\ Z_f d_f - X_f h_f \\ -Y_f d_f \end{bmatrix}
\]

where \(C_{d_i,f}, C_{d_j,f}, C_{d_k,f}\) denote the fuselage quadratic drag coefficient along \(x\)-, \(y\)- and \(z\)-axis respectively; \(D_f\) and \(h_f\) are the fuselage horizontal and vertical positions of the aerodynamic center, and \(V_{i,mr}\) is the main rotor induced velocity.

2.2.4 Wing

\[
f_w = \begin{bmatrix} X_w \\ Y_w \\ Z_w \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \rho \left(\frac{1}{\pi h_w} \left(C_{r,w} u^2 + 2 C_{e,w} C_{c,w} w + C_{c,w} w^2 \right) \right) \\ 0 \\ \frac{1}{2} \rho \left(C_{c,w} u^2 + C_{c,w} w \right) \end{bmatrix}
\]

\[
m_w = \begin{bmatrix} L_w \\ M_w \\ N_w \end{bmatrix} = \begin{bmatrix} 0 \\ Z_u D_w - X_w h_w \\ 0 \end{bmatrix}
\]

where \(C_{r,w}, C_{c,w}\) being the wing camber-incidence effect, and the horizontal tail circulation effect, respectively; \(D_w\) and \(h_w\) are the wing horizontal and vertical cg positions, respectively.

2.2.5 Horizontal and Vertical tails

\[
f_h = \begin{bmatrix} X_h \\ Y_h \\ Z_h \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{2} \rho \left(C_{r,h} u^2 + C_{c,h} u (w + D_h q) \right) \end{bmatrix}
\]

\[
m_h = \begin{bmatrix} L_h \\ M_h \\ N_h \end{bmatrix} = \begin{bmatrix} 0 \\ Z_h D_h \\ 0 \end{bmatrix}
\]
with $C_{r,ht}$, $C_{c,ht}$ being the horizontal tail camber-incidence effect, and the horizontal tail circulation effect, respectively; D_{ht} is the horizontal tail ‘cg’ x-axis position.

$$\begin{align*}
\mathbf{f}_n &= \begin{bmatrix} X_n \\ Y_n \\ Z_n \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{1}{2} \rho \left(C_{r,ht} u^2 + C_{c,ht} (v-D_{ht}r) \right) \\ 0 \end{bmatrix} \\
\mathbf{m}_n &= \begin{bmatrix} L_n \\ M_n \\ N_n \end{bmatrix} = \begin{bmatrix} Y_n h_n \\ 0 \\ -Y_n D_{ht} \end{bmatrix}
\end{align*}$$

(19) (20)

$C_{c,vt}$, $C_{r,vt}$, are the vertical tail camber-incidence effect, and the verticaltail circulation effect, respectively; D_{vt} is the vertical tail cg x-axis position.

2.3 Load factor

The load factor n of the a helicopter airframe is expressed in terms of linear velocities and accelerations measured in the inertial reference. Three forms of the factor n can be measured as follows [34]

$$
n_{fp} = \frac{1}{g} \sqrt{\dot{x}^2 + \dot{y}^2 + (\ddot{z} - g)^2}$$

(21)

$$
n_{j} = \frac{\ddot{x} \dot{x} + \ddot{y} \dot{y} + \ddot{z} (\ddot{z} - g)}{g \sqrt{\dot{x}^2 + \dot{y}^2 + (\ddot{z} - g)^2}}$$

(22)

$$
n_{p} = \sqrt{n_{fp}^2 - n_{j}^2} = 1 - \frac{\ddot{z}}{g}$$

(23)

where n_{fp}, n_{j}, n_{p} denote the flight path, tangential, and normal (lateral) load factors, respectively. The normal load factor is a measure of the vertical acceleration.

3. Control System Design

3.1 Helicopter control system description

It is well known that a standard helicopter airframe is practically controlled though its rotor system that consists of main and tail rotors as shown in Figure 1. The first rotor generates trust (lift) and translational control while the second one ensures heading control (see Figure 1).
Hovering, forward flight, and autorotation are the main flight conditions of a helicopter system. To control these flight conditions, a typical flight control system combines four main physical control inputs to achieve different desirable motion modes i.e. collective stick, longitudinal and lateral cyclic sticks, throttle, and directional pedals. Figure 2 shows the different controls of a single-rotor helicopter.

Figure 1: Helicopter rotor system configuration [35]

Figure 2: General configuration of a single rotor helicopter flight control system [36]
Collective pitch control: the collective pitch control (CPC) is much more consistent rather than fixed pitch control (FPC) for mid and full size helicopter airframes. CPC is used to control the helicopter airframe at constant speed with variable angle-of-attack (AOA), produce more lift, get very precise and immediate control, perform inverted flight, and get better wind handling immunity. Figure 2a shows the control of the thrust through variation of the collective pitch of the main-rotor blades.

Cyclic pitch control: Cyclic pitch control, often called stick-by-pilot (SBP), is used to change helicopter attitude and airspeed. SBP relieves the helicopter from changing torque spikes and allows avoiding large correction of rotors’ speed usually needed in FPC. The longitudinal cyclic control shown in Figure 2b is used to pitch the rotor tip-path plane up or down causing forwards and backwards tilting of the thrust vector in the longitudinal plane. However, the lateral cyclic control shown in Figure 2c rolls the path plane causing right and left tilting of the thrust vector in the lateral plane.

Tail rotor control: Tail rotor control (TRC) or anti-torque pedals are used to increase/decrease the pitch of the tail rotor blades. It also helps compensating for reaction torque produced by the blades’ drag or induced by the main rotor. As shown in Figure 2d, the TRC mode is used to control the yaw motion by changing the pitch of the tail rotor blades, which produces change in the magnitude of the balancing torque.

Engine Throttle Control: Engine throttle (ETC) provides the power of helicopter engine. A combination between CPC and ETC is done through an electronic governor to raise the collective pitch lever and increase the pitch.

In terms of input/output, CPC, SBP, TRC, and TRC are the primary control inputs for altitude (all up and all down), attitude (bank left or right, and move forward or aft), heading, and rotor RPM, respectively. Both CPC and ETC are considered as control inputs to the primary force generating rotors. The CPC and TRC are used as control inputs to the primary moment generating rotors. Table 1 lists the aerodynamic control inputs to the helicopter dynamics and shows their corresponding aerodynamic loads [35]

<table>
<thead>
<tr>
<th>Control</th>
<th>Symbol</th>
<th>Reference</th>
<th>Control axis</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collective Pitch</td>
<td>δ_c</td>
<td>Full down</td>
<td>Heave Control (Up)</td>
<td>+M</td>
</tr>
<tr>
<td>Longitudinal cyclic</td>
<td>δ_e</td>
<td>Centered Full-forward</td>
<td>Pitch control (Aft)</td>
<td>+L</td>
</tr>
<tr>
<td>Lateral cyclic</td>
<td>δ_a</td>
<td>Centered Full-left</td>
<td>Roll control (Right)</td>
<td>-Z</td>
</tr>
<tr>
<td>Directional pedals</td>
<td>δ_p</td>
<td>Centered Full-left</td>
<td>Yaw control</td>
<td>+N</td>
</tr>
</tbody>
</table>

3.2 Helicopter control modelling

The four main control inputs described in Table 1 have been subject to many investigations where different sort
of models have been proposed such as in [35,37]. In this paper, we use an interpolation model that relates the helicopter control inputs to the airframe forward speed V. Using the available data for the UH-60A [37], the following polynomial relationships were obtained

$$
\begin{align*}
\delta_c &= -1.22 \times 10^{-1} V^6 + 5.94 \times 10^{-9} V^5 - 1.12 \times 10^{-6} V^4 + 10.26 \times 10^{-5} V^3 - 3.96 \times 10^{-3} V^2 + 10.8 \times 10^{-3} V + 9.0174 \\
\delta_s &= 1.85 \times 10^{-3} V^5 - 77.07 \times 10^{-4} V^4 + 11.6510^{-3} V^3 - 7.32 \times 10^{-3} V^2 + 16.19 \times 10^{-3} V + 3.75 \\
\delta_r &= 3.79 \times 10^{-11} V^9 - 2 \times 10^{-8} V^7 + 4.04 \times 10^{-6} V^5 - 3.92 \times 10^{-4} V^3 + 18.34 \times 10^{-3} V^2 - 38.51 \times 10^{-2} V - 0.3013 \\
\delta_p &= 1.3 \times 10^{-9} V^5 - 5.11 \times 10^{-7} V^4 + 7.17 \times 10^{-5} V^3 - 3.2 \times 10^{-3} V^2 - 85.63 \times 10^{-2} V + 24.064
\end{align*}
$$

(24)

The interpolation variance σ^2 and root mean square error μ are as follows

$$
\begin{align*}
\sigma^2_{\delta_c} &= 0.9995, \quad \mu = 47.10 \times 10^{-3} \\
\sigma^2_{\delta_s} &= 0.9819, \quad \mu = 174.21 \times 10^{-3} \\
\sigma^2_{\delta_r} &= 0.9825, \quad \mu = 391.60 \times 10^{-3} \\
\sigma^2_{\delta_p} &= 0.9969, \quad \mu = 147.74 \times 10^{-3}
\end{align*}
$$

(25)

Figure 3 shows the change of the UH-60A helicopter control inputs with respect to its flying velocity.

![Figure 3: UH-90A control inputs interpolation](image)

The longitudinal and lateral tip-path-plane angles δ_{long} and δ_{lat} affect directly the main rotor forces and moments as shown in equations (5) and (6). Both angles are computed using the following differential models
\[
\dot{\delta}_{\text{long}} = H(t)\Gamma, \quad \dot{\delta}_{\text{lat}} = S(t)\Gamma \tag{26}
\]

with
\[
H(t) = x_{\text{long}} - \frac{\omega_h}{\Gamma} - \delta_{\text{long}} + \frac{\partial \xi}{\partial u}, \quad S(t) = x_{\text{lat}} - \frac{\omega_h}{\Gamma} - \delta_{\text{lat}} + \frac{\partial \xi}{\partial v}, \quad \Gamma = \frac{1}{16} N_{\text{lock}} \omega_h \tag{27}
\]

where \(x_{\text{long}}, x_{\text{lat}}\) are the longitudinal and lateral swashplate angles, respectively; \(\xi\) is the lateral flapping and \(\omega_h\) is the rotor angular rate; \(u\) and \(v\) are the forward and side components of the velocity vector.

\[
\frac{\partial \xi}{\partial u} = \frac{\partial \xi}{\partial v} \left[1 + 3 \frac{u^2}{v^2 (r_m \omega_m)^2} \right], \quad \frac{\partial \xi}{\partial v} = \frac{8}{3} \frac{\mu_{\text{rot}}}{r_m \omega_m} + 2 \left(\frac{w - V_{\text{inr}}}{(r_m \omega_m)^2} \right) \tag{28}
\]

\(\mu_{\text{rot}}\) is the main rotor collective pitch angle. The lock number \(N_{\text{lock}}\) given as
\[
N_{\text{lock}} = \frac{\rho ac R^4}{I_v} \tag{29}
\]

with \(a\) is the slope of the 2D airfoil lift curve, \(c\) is the chord length, \(R\) is the rotor radius, and \(I_v\) is the flapping moment of inertia.

3.3 Numerical Integration

The numerical integration of the expressions (26) is usually performed using the classical two-step Adams-Bashforth technique as shown in the following expression
\[
\delta_{\text{long}}^{(k+1)} = \delta_{\text{long}}^{(k)} + \Delta t \left(a_1 H^{(k)} \Gamma + a_2 H^{(k)} \Gamma \right), \quad \delta_{\text{lat}}^{(k+1)} = \delta_{\text{lat}}^{(k)} + \Delta t \left(a_1 S^{(k)} \Gamma + a_2 S^{(k)} \Gamma \right) \tag{30}
\]

where \(\Delta t\) denotes the sampling time and \(a_1, a_2\) are numerical integration constants.

The classical Adams-Bashforth integration scheme has shown numerical instability mainly at the presence of perturbations in the initial conditions or starting values [38]. To build a stable solution to the helicopter dynamics problem, we propose the use of the following robust HOSM numerical differentiator [33].

\[
\begin{cases}
\text{for } k = 0, \ldots, r-1 & \text{with } r \geq 1 \\
\xi_k = v_k, & \text{with } v_{-1} = \sigma \\
\dot{v}_k = -\frac{1}{r-1} \left[r-1 \right] \xi_k - v_{k-1} + \frac{r-1}{r-1} \text{sign} (\xi_k - v_{k-1}) + \xi_{k+1}
\end{cases} \tag{31}
\]

where \(\dot{\xi}_k\) \((k = 2, 1, \ldots, r - 1)\) denote the successive time derivatives of the measured signal, observed parameter, or the tracking error \(\sigma\). \(\beta_k\) denote the differentiator gains and \(L\) is a Lipschitz constant. The
coefficient r is the relative degree denoting the higher order time derivative of σ being computed. According to the properties of the HOSM differentiator, at least $r - 1$ of the successive time derivatives are exact. According to the algorithm (31), the first and third order time derivatives of the signal σ are given as follows.

$$
\begin{align*}
\dot{\xi}_1 &= -\beta_1 L \left| \xi_1 - v_i \right|^\frac{1}{2} \text{sign}(\xi_1 - v_i) + \xi_2 & \text{for } r = 2 \\
\dot{\xi}_2 &= -\beta_2 L \left| \xi_2 - v_i \right|^\frac{1}{2} \text{sign}(\xi_2 - v_i) + \xi_3 & \text{for } r = 3
\end{align*}
$$

(32)

where ξ_i and v_i are computed using the algorithm (31). One of the advantages of the numerical HOSM differentiator is that the virtual increase of the relative order r yields high-accuracy calculation of the antecedent $r - 1$ time derivatives.

4. Simulation

To evaluate the effectiveness of the proposed control model, a pull-up maneuver scenario is simulated for UH-60A helicopter using the available data in [39]. Pull-up maneuvering is one of the most important motion trajectories of a helicopter to avoid obstacles such as mountains as shown in Figure 4.

![Figure 4: A helicopter climbing a mountain [40]](image)

Figure 5 shows a simulated pull-up maneuver with initial forward speed of 46.3 m/s (90 kt) at 1000 m (3,280.85 ft) altitude to avoid a mountain with a height of 2020 m (6627.3 ft).

![Figure 5: Simulated pull-up maneuver](image)
The maneuver goal consists of reaching an altitude gain of 968 m (3175.85 ft) without exceeding a maximum normal load factor of $n_p = 2.5g$. It is worth noting that according to FAR PART 27 regulations [41], the normal load factor should not exceed a value of $n_{\text{max}} = 3.5g$ in order to avoid any structural damage to the helicopter airframe or its components. Since the pull-up maneuver is performed with constant speed V, the airframe velocities vector is given, from equation (3), in the inertial axes as follows

$$
\dot{x}_e = V \cos \theta \cos \psi, \quad \dot{y}_e = V \cos \theta \sin \psi, \quad \dot{z}_e = V \sin \theta
$$

(33)

Figure 6 and Figure 7 depict the time-history of the flight speed u (forward speed) and the normal and longitudinal load factors, respectively. Figure 8 and Figure 9 show the corresponding changes in the vertical aerodynamic z-axis force and pitch moment.

![Figure 6: Time-history of the forward speed decay](image)

![Figure 7: Load factors: a) tangential, b) normal](image)
Figure 8: Aerodynamic z-axis force F_z: a) HOSM-based algorithm, b) Adamas-Bashforth algorithm,

Figure 9: Aerodynamic pitch moment: a) HOSM differentiator, b) Adamas-Bashforth differentiator

Table 2: Comparison study of windy and non-windy flights

<table>
<thead>
<tr>
<th></th>
<th>HOSM algorithm $u_g=0$</th>
<th>A-B Algorithm</th>
<th>HOSM algorithm $u_g\neq0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_f</td>
<td>31.07 (m/s)</td>
<td>33.60 m/s</td>
<td>18.16 (m/s)</td>
</tr>
<tr>
<td>$n_{p,\text{max}}$</td>
<td>2.35 < 2.5 (g)</td>
<td>2.995 > 2.5 (g)</td>
<td>2.29 < 2.5 (g)</td>
</tr>
<tr>
<td>$n_{t,\text{max}}$</td>
<td>0.11 (g)</td>
<td>0.134 (g)</td>
<td>0.18</td>
</tr>
<tr>
<td>T_{max}</td>
<td>8586 (N.m/s)</td>
<td>15,891 (N.m/s)</td>
<td>11,457 (N.m/s)</td>
</tr>
<tr>
<td>$F_{z,\text{max}}$</td>
<td>98683.80 (N)</td>
<td>17,851 (N)</td>
<td>11,0961 (N)</td>
</tr>
<tr>
<td>M_{max}</td>
<td>105,739 (N.m)</td>
<td>3,068.1 (N.m)</td>
<td>145,615 (N.m)</td>
</tr>
</tbody>
</table>
Table 2 summarizes the results of a comparison study between flight in windy and non-windy atmosphere. The non-windy simulation is performed for both HOSM-based and AB-based algorithms. The windy flight is simulated for HOSM-based algorithm with \(V_g = [0 \ 0 \ -12.86]^T \) m/s (\(-25 \text{ kt}\)).

5. Conclusion

In this paper, a dynamic model for helicopter dynamics and maneuverability simulation has been presented. First, a velocity-based control model was interpolated from exciting experimental data to compute the control inputs to the airframe dynamics as functions of the forward flight speed. Second, a dynamic model was built based upon the contributions of the main components of the vehicle in producing the necessary aerodynamic forces and moment. Due to the numeric instability of the two-step Adams-Bashforth integration algorithm, a high-order sliding mode observer was used as a numerical differentiator to suppress instability and increase accuracy of computations. Simulation results obtained for a pull-up maneuver has shown the effectiveness of the proposed model in achieving mission requirements without overstressing the airframe.

6. Recommendations

Future work will focus on the design of the flight control system based upon the trajectory of the helicopter and its maneuvering. The developed motion-manuevering model will be integrated in the control loop of full-scale helicopter for development of advanced flight control systems.

Acknowledgment

This article was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah. The author, therefore, acknowledges with thanks DSR technical and financial support.

References

[6]. T. Ertu’grul, M.A. Adli, and M.U. Salamci, “Model reference adaptive control design for helicopters

[13]. B. Kada, “Helicopter nonlinear dynamics modelling for motion simulation and real-time control”, 10th International Conference on Advances in Engineering and Technology (AET-18), Malaysia, 2018

[40]. https://unsplash.com/photos/SveC4JcxGrM