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Abstract 

Identification and assessment of outliers have a key role in Ordinary Least Squares (OLS) regression analysis. 

This paper presents a robust two-stage procedure to identify outlying observations in regression analysis. The 

exploratory stage identifies leverage points and vertical outliers through a robust distance estimator based on 

Minimum Covariance Determinant (MCD). After deletion of these points, the confirmatory stage carries out an 

OLS analysis on the remaining subset of data and investigates the effect of adding back in the previously 

deleted observations. Cut-off points pertinent to different diagnostics are generated by bootstrapping and the 

cases are definitely labeled as good-leverage, bad leverage, vertical outliers and typical cases. This procedure is 

applied to four examples taken from the literature and it is effective in rightly pinpointing outlying observations, 

even in the presence of substantial masking. This procedure is able to identify and correctly classify vertical 

outliers, good and bad leverage points, through the use of jackknife-after-bootstrap robust cut-off points. 

Moreover its two stage structure makes it interactive and this enables the user to reach a deeper understanding 

of the dataset main features than resorting to an automatic procedure. 
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1. Introduction   

One of the most famous methods of data analysis that aimed to discover how one or more variables affect other 

variables is called “regression”. Outliers are major problem in regression analysis and consider being a serious 

threat to standard least squares analysis. The definition of the term "outlier" is any observation which deviates 

from the pattern set by the majority of the data. Also, it may define as any observation that is far from the bulk 

of the data. Therefore, the usage of robust regression is needed in order to reduce the effect of outliers. Despite 

its mathematical beauty and computational simplicity, the ordinary least squares (OLS) estimator dramatically 

lacks this preferred robustness. For instance, a single outlier can have a large arbitrary effect on the estimate.  In 

this paper, the main goal is to find a better robust regression estimator to reduce the influence of outliers. Thus, 

we propose using four different robust regression estimators to deal with the problem of Outliers in the data 

with employing the bootstrap techniques. The main purpose of using the bootstrap is to give rise to the robust 

estimators. These estimators are namely as: the Least Median Square (LMS), the M-estimator (MM), Bootstrap 

M-estimator (BMM), and the Fast Bootstrap M-estimator (FBM). In order to achieve our goal, we perform 324 

simulation studies for data contains different distributions of marginal errors, different sample sizes and a 

variety of percentages of outliers, and three different patterns of outliers directions through utilizing the four 

proposed robust regression estimators.  Applications on real data also have been considered especially when 

there exist a mixed variables as well as the presence of Outliers observations. Several interesting features have 

been noted from this study. One of the most striking point is that the bootstrap robust regression estimators 

(BMM estimator and FBM  estimator) are much efficient than the LMS, MM, and OLS estimators when the 

outliers are present, regardless of the data sample size, the errors' marginal distribution, and the direction of 

outliers. Therefore, employing the bootstrap technique within the robust regression context can provide a very 

beneficiary result.   

1.1 Outliers  

The definition of the term "outlier" is any observation which deviates from the pattern set by the majority of the 

data. Also, it may define as any observation that is far from the bulk of the data. Typing and recording data may 

produce outliers, and any data set can have a large proportion of outlier's acts differently for each variable. 

Recording errors can often be corrected and omitted variables can also be included. However, there is no simple 

explanation for a group of data that differs from the majority of the data [24]. Outliers will cause a weak linear 

relationship to appear as a strong linear relationship, or may have the opposite effect by masking a strong linear 

relationship. Moreover, Outliers tend to have a stronger effect when the sample size n is small than when the 

sample size n is large. Therefore, Outliers may have a dramatic impact on results of regression analyses, 

potentially having major influence on effects sizes and regression coefficients [21]. 

1.2   Detecting of Outliers 

Outlier detection methods must involve the use of statistics that are obtained for each case (observation). Three 

categories of detection measures are generally used, namely  
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 Leverage: Extremity of each observation on the Explanatory Variables. 

 Discrepancy: Extremity of each observation on the Response variable. 

Influence: Influence of each observation on regression results [1].   

1.2.1  Leverage Measures  

The Leverage Measures assess the extremity (i.e the typicality) of each observation on the Explanatory 

variables. Extreme observations have the potential to have great influence on results of regression analyses. 

When there is only one explanatory variable, the usual measure of leverage is given by 

    
 

 
 

      ̅̅ ̅̅  

∑    
   

                        (1.1) 

Where iih  is the ith element on the main diagonal of the hat matrix. The hat matrix can be defined as 

                                               

Observations near the mean of X produce low values of iih , whereas observations further from the mean 

produce larger values. This measure of leverage can be extended to the case of p  explanatory variables. In 

general, Observations near the joint mean of the distribution of the Explanatory variables yield low values of 

Leverage iih , and cases further away from the joint mean yield larger values. Once we obtain  values, one 

for each of the n observations, we need to examine them to identify extreme values. The Common Cut-off 

values are iih >2(p+1)/n or iih >3(p+1)/n.  

1.2.2  Discrepancy Measures 

The Discrepancy Measures assess extremity on the Response variable of the regression model. A simple 

measure of extremity would be the regression residual for each case: 

       ̂                                     

Recall that, any extreme observation i  will influence the regression line in such a way as to make the 

corresponding residual smaller for that observation. An improved measure of discrepancy for case i  would be 

the value of the residual that would be obtained if that case were not included in the regression model. This 

value is calculated by 

       ̂                                     

Where )(
ˆ

ii is the predicted value of Y that would be obtained for case i  using a regression equation derived 

iih
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from the sample excluding case i . Observations exhibiting a large value of  are cases that are deviant in 

terms of their residuals when the regression equation is derived based on the rest of the sample. To put these 

values on a standardized scale we define 

  

     
                                       

These values are called Studentized residuals [20]. We then wish to identify extreme values by using the cutoff 

values. Since these residuals approximately follow a t-distribution, common cutoffs are ±2 in small to moderate 

samples, and ±3 or ±4 in large samples. By this process we can identify observations that are highly discrepant 

on the Response variables in the regression model estimation process. 

1.3 Influential Observations Measures 

There are three kinds of influence observations measures, namely:  

 Influence on a single Fitted Value 

Well-known influence measure assesses the change in the predicted Y value as a function of whether an 

observation, i , is included in the sample or not. For each case i we obtain a measure called DFFITSi, and is 

calculated by   
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  then the case is influential case [1]. 

 Influence on All Fitted Values  

Another commonly used index called Cook’s distance, and is calculated by 
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then the case is influential case. This process helps us to identify observations that have a relatively large global 

influence on the results of the regression model estimation process [6]. 

 Influence on Specific Regression Coefficients 

In some situations, we may be interested in whether those particular coefficients might be highly influenced by 

outliers. Such influences can be assessed using an index called DFBETA. We can calculate a DFBETA value 

for each case, i : 

         
        

√      

                                   

Where Coefficient kb  obtained from the full sample, and 
)i(kb  is the regression coefficient obtained when 

case i  is excluded from the sample. This value represents the influence of observation i  on the regression 

coefficient
j . Once we obtain one of these measures for each case we again seek to identify extreme values 

using cutoffs are ±1 for small to moderate n, and larger values such as n/2 when n is large [20]. 

 2. Robust Regression Models 

2.1  Definition of Robustness  

Robustness is an important issue for all statistical analyses. The term robustness comes to signify the 

insensitivity to small deviations from the assumption [18]. Diagnostics and Robust regression have the same 

objectives, but in the opposite order. When using diagnostic devices, we first tries to delete the outliers and then 

to fit the good data by the Ordinary Least Squares (OLS). On the other side, in the Robust analysis, we first 

want to fit a regression to the majority of the data and then try to discover the outliers as those points which 

possess large residuals from that robust solution [26]. In order to describe the robustness of an estimator, 

Hample (1971) had proposed two different and complementary ways, called Global Robustness, and Local 

Robustness [18]. 

2.2  Global Robustness  

Hample (1971) had introduced the concept of breakdown point as a measure of comparison of performance 

among different robust techniques. The breakdown of an estimator is defined as the smallest proportion of the 

data that can have an arbitrary large effect on its value. Therefore, high breakdown is favorable and the largest 

value of it is 50%. The sample median is less sensitive to observation values and unless more than half of the 

observations are bad it does not totally break down, hence it has breakdown 50% [25]. 

2.2.1  Least Median of Squares (LMS) Estimator  

The Least Median of Squares estimate (LMS) which originally was proposed by Hampel (1971) and later are 
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developed by Rousseeuw (1984) is defined as follows: 

 Let the vector minimizing the following objective: 

Minimize median                                           (2.1) 

Where the residuals  equals  pipii XXy   11 . Obviously, the breakdown point of this 

estimator is 50%, which means that it remains bounded when up to half of the data points  ii y,  are replaced 

by arbitrary values. Comparing with the breakdown point of the OLS estimators  which equals to 0% .  

There are several interesting properties of LMS estimator:                                                                                       

1. There always exists a unique solution for the LMS estimator. 

2. The LMS estimator is regression equivariant, scale equivariant and affine equivariant. 

3. If the number of the explanatory variables (p) > 1 and the the number of observations (n), then the 

breakdown point of the LMS estimator is: 

 

The major disadvantage of the LMS estimator is the lack of efficiency when errors would really be normally 

distributed. The convergence rate of the LMS estimator is only 3
1

n as the convergence rate of the 

asymptotically normal estimators is 2
1

n . The LMS estimator is not asymptotically normal [16]. 

2.3  Local Robustness 

The basic idea of this concept is to measure the effect of a single outlier on the bias and variance respectively. 

Only the influence function will be considered here [27]. The influence function in regression analyses can be 

defined as follows: 

Let ),(),.......,,( 11 nn yxyx  represents a bivariate data, which can be modelled by the following linear 

regression model 

iii exy                                (2.3) 

It is appropriate to include 1 as the first component of ix  so that ),.....,,1( 1 ipii xxx   and
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Let the statistic ),.,,.........,( 11 nn yxyx  be an estimate of   calculated from the sample .In order to define 

the influence function of estimate, we regard the explanatory variables, and the response variable, as being 

random. Let n  denote the empirical probability distribution that assigns probability 
 

 
  to each data point (

), ii yx , and express the statistic ),.,,.........,( 11 nn yxyx  as a function of  n . The OLS estimate of   can 

be written as )( n such that  

)(E)(E)P(T P

1

pn  
                  (2.4) 

Where  yx,  are random vectors with distribution  . Thus, the influence function ),( IF  of the estimate 

),.,,.........,( 11 nn yxyx  can be defined as the vector of derivatives of 
),()1((   n
  with respect 

to   at 0 . Therefore, the ),( IF  will give the rate of change of the estimate when a small proportion 

of any additional data with values ( ),  is included in the sample. For the OLS estimate,  

),( IF = )wˆ(w)xx(n olse

1  
                   (2.5) 

For more comprehensive details see (David Birkes. Yadolah Dodge). In the literature, there are two robust 

methods known as influence functions (The Least Absolute Deviation and The M-estimation). The M-

estimation method is one of interest in this work.  

2.3.1 The M-Estimation Method 

The most famous method of robust regression is the M-estimation. Huber [17] was the first to introduced M-

estimator. The M-estimators are statistically more efficient (for regression models with Gaussian error) then 

OLS estimators, while at the same time they still robust with respect to outlying observations i  [13]. Let us 

consider the fitted linear regression model in the matrix notation, for the ith case of n observations: 

)6.2(ˆˆ
1

XY 
n

 

The basic idea of the M-estimator is to minimize the following objective function: 

)7.2()ˆ()(
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Where the function   gives the contribution of each residual to the objective function. A reasonable   should 

have the following properties: 
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For example, for the least squares estimation, 
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Let 
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 be the derivative of 


. Differentiating the objective function with respect to the coefficients, ̂  and 

setting the partial derivatives to 0, produces a system of 1k  estimating equations for the coefficients: 
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Define the weight function as eeee i /)()()(   , and let )( ii e  . Then the estimating equations 

be rewritten as: 
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Solving such estimating equations is simply a weighted least-squares problem, thus by minimizing   




n

i

ii e
1

22  

The weights, however, depend upon the residuals, the residuals depend upon the estimated coefficients, and the 

estimated coefficients depend upon the weights. 

The Iteratively Reweighed Least Squares (IRLS) is required in order to obtain the solution, which is performed 

in the following algorithm: 

1. Select initial estimates
)0( , such as the OLS estimates. 

2. At each iteration t , calculate residuals )1( t

ie  and associated weights  )1()1(   t

ii

t

i e  from the previous 

iteration. 

3. Solve for new weighted least squares estimates 
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Where   is the model matrix, with i  as its ith row, and }{
)1()1(  

t

i

t diagW  is the current weight 

matrix. 

4. Step 2. and Step3. are repeated until the estimated coefficients converge. The asymptotic covariance matrix 

of ̂  is: 

  )10.2())()(/)(()ˆ(
22    

Using 
 2)( ie

 to estimate
)( 2

, and 
 2/)(  nei

 to estimate  2)(   produces the estimated 

asymptotic covariance matrix, )ˆ(ˆ  [13], and [16]. 

Keep in mind that the IRLS solution is not equivariant with respect to scale. Therefore, the residuals should be 

standardized by means of some estimate of the standard deviation   so that: 

)11.2(0)ˆ/(
1




n

i

iir   

Where ̂ is the Median Absolute Deviation (MAD) scale estimator, and can be obtained as 

)12.2())((*ˆ
1

rimedrC i

n

i

 


  

Where C =1.4826 if the error terms distributed as normal. 

In conclusion, the MM estimator is the most used in the robust estimation context. The letter M indicates that 

the M estimation is an estimation of the maximum likelihood type.  A more detailed description is available in, 

e.g., [28,27,3,11,13] 

2.4  The Principle of Bootstrap in Regression 

The Bootstrap technique was introduced by [9]. Simply, Bootstrapping is a general approach to statistical 

inference based on replacement of the true sampling distribution for a statistic by resampling from the original 

observed data of size n. Therefore, Bootstrap technique assumes only finite values of some moments, but hardly 

any restricting assumptions about the underlying probability distribution. The central element of bootstrap is a 

bootstrap sample For more comprehensive details see.[5,7,14,10,29]. In the bootstrap regression procedure, the 

Ordinary Least Squares (OLS) method is often used to estimate the parameters of regression models. It is, 

however, extremely sensitive to outliers and non-normality of errors. The robust bootstrapping method replaces 

the classical bootstrap mean and standard deviation with robust estimates, using robust regression estimates 

with a high breakdown point. In this thesis, MM regression with initial Least Median of Squares LMS 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2020) Volume 49, No  1, pp 143-160 

152 
 

estimates has been used. The bootstrap is not used for regression parameters estimation, being a tool for the 

acquisition of confidential intervals and bias regression parameters estimation. 

2.5  The Proposed Estimators of the Study 

   The following regression methods have been considered in this work: 

 Ordinary Least Squares regression (OLS), 

 Least Median of Squares regression (LMS), 

 MM-regression (MM), 

 Bootstrap regression based on the MM method (BMM), 

 Fast Bootstrap regresion based on robust MM-regression (FBM) 

3. The Simulation Study  

The main goal of this section is to compare the performance of the five proposed estimators that used to deal 

with the problem of outliers. In the simulation study, all computations and graphics were carried out using the 

software package R, which based on the statistical language S (Statistical Science, Inc. 2005).  

3.1 The Illustration of the Experiment  

The simulated data, in this study, represented many situations that we often encounter when using the regression 

analysis. Since there are various situations of outliers on the regression model, we decided to consider three 

different arrangements depending on the number of explanatory variables (the simple case: p=1, and the 

multiple cases: p=2, and p=5).  Each set was generated in three different settings, as:  

Setting 1: Outliers are located in the y-direction,    

Setting 2: Outliers are located in the x-direction and  

Setting 3: Outliers are located in the xy-direction   

Three different sample sizes are considered n = 30, 50, and 100 with the regression model which has the form 

Y= . In each of three different setting mentioned above, we shall obtained, (1 )% of them were outliers. 

Experimenting with different random sample sizes n when p = 1 for a simple linear regression and when p = 2, 

and 5 for multiple linear regression, the simulated data are obtained. Also, three different percentages of outliers 

10%, 20%, 50% were considered. Finally, four different distributions of marginal errors were also considered, 

namely: the normal distribution, the exponential distribution, the uniform distribution and , the heavy-tailed t 

distribution. 

The Summarized Results for simple Linear Regression    
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Figure 3.1: The Box plots exhibit how various proportions of outliers affect the mean (standard deviations) of 

the MSE values for the five proposed estimators (OLS, LMS, MM, BMM, and FBM) with different choices of 

sample sizes assuming the proposed marginal errors belongs  to Normal distribution with p=1 and outliers are 

located in XY-direction. 

 

Figure 3.2: The Box plots exhibit how various proportions of outliers affect the mean (standard deviations) of 

the MSE values for the five proposed estimators (OLS, LMS, MM, BMM, and FBM) with different choices of 

sample sizes assuming the proposed marginal errors belongs to t distribution with p=1 and outliers are located 

in XY-direction. 
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Figure 3.3: The Box plots exhibit how various proportions of outliers affect the mean (standard deviations) of 

the MSE values for the five proposed estimators (OLS, LMS, MM, BMM, and FBM) with different choices of 

sample sizes assuming the proposed marginal errors belongs to Exponential distribution with p=1 and outliers 

are located in XY-direction. 

 

Figure 3.4: The Box plots exhibit how various proportions of outliers affect the mean (standard deviations) of 

the MSE values for the five proposed estimators (OLS, LMS, MM, BMM, and FBM) with different choices of 

sample sizes assuming the proposed marginal errors belongs to Uniform distribution with p=1 and outliers are 

located in XY-direction. 

3.3  The Summarized Results for Multiple Linear Regression    

For multiple linear regression models, the number of explanatory variables (p) was set at five. Moreover, the 

simulation study was also carried out on same aspects. Each model was considered in the same fashion as 

previously described for a simple linear regression model.  

3.3.2 The multiple linear regression with Model (p=5)  

Setting 3: The Outliers are located in the XY-direction  
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Figure 3.5: The Box plots exhibit how various proportions of outliers affect the mean (standard deviations) of 

the MSE values for the five proposed estimators (OLS, LMS, MM, BMM, and FBM) with different choices of 

multiple sizes assuming the proposed marginal errors belongs  to Normal distribution. 

 

Figure 3.6: The Box plots exhibit how various proportions of outliers affect the mean (standard deviations) of 

the MSE values for the five proposed estimators (OLS, LMS, MM, BMM, and FBM) with different choices of 

multiple sizes assuming the proposed marginal errors belongs  to t distribution. 

 

Figure 3.7: The Box plots exhibit how various proportions of outliers affect the mean (standard deviations) of 

the MSE values for the five proposed estimators (OLS, LMS, MM, BMM, and FBM) with different choices of 

multiple sizes assuming the proposed marginal errors belongs  to Exponential distribution. 
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Figure 3.8: The Box plots exhibit how various proportions of outliers affect the mean (standard deviations) of 

the MSE values for the five proposed estimators (OLS, LMS, MM, BMM, and FBM) with different choices of 

multiple sizes assuming the proposed marginal errors belongs  to Uniform distribution. 

4. Applications on Real Data 

The most important thing in researches is the application side, because it's useful to solve many of practical 

problems, also application support the validation of our theoretical results obtained through simulations.  

4.1 The Education and Related Statistics for the U.S. States  

The Education data frame has 51 observations and 4 variables. The observations are collected from the U. S. 

states and Washington, D. C. This data can be easily obtained from the book of Statistical Abstract of the 

United States (Bureau of the Census, 1992). This data frame contains the following variables: At first, we 

compute the some statistical properties of the education data. Table 4.3 consists of the means and standard 

deviations of the four chosen variables that are formed the education data.  

Table 4.1: Same statistical properties of the four variables that from the education Data (mean and standard 

deviation) 

 SATM 

x1 

Percent 

x2 

Pay/$1000 

x3 

Dollar 

Y 

Min  437.0 4.00 22.00 2.993 

1st Qu  470.0 11.50 27.50 4.354 

Median  490.0 25.00 30.00 5.045 

Mean  497.4 33.75 30.94 5.175 

3rd Qu  522.5 57.50 33.50 5.690 

Max  577.0 74.00 43.00 9.159 

St. dev.  34.5688 24.0739 5.3081 1.3762 

  TheDurbinWatson=1.768   

From table 4.1, we notice that the mean and median values of the explanatory variables x2 and x3 are pretty close 

to each other. Whereas, the explanatory variables x1 have relatively larger mean and median values respectively. 

Also, we notice that the standard deviation values of the explanatory variables x1 and x2 are large and pretty 
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close to each other. Whereas, the explanatory variables x3  has a smaller standard deviation value. This give 

initial indication of having some values that might be outliers. Finally, the Durbin-Watson measure confirm no 

existence of the multicollinearity problem between the explanatory variables x1, x2 and x3 . Figure (4.1) display 

the scatter plot of the dollars (y) with each one of the three explanatory variables.   

 

 

Figure 4.1: The scatterplot of the three explanatory variables that from the Education. 

Having a close look at the scatter plots in Figure 4.2, we notice the following remarks: Firstly, the plot of the 

variables SATM  x1 versus the dependent variable Dollars (y) seem to have several outliers in xydirection. 

Secondly, the plot of the variable Dollars (y) versus percent x2 seems to have several outliers in x-direction. 

Thirdly, the plot of the variable Dollars (y) versus pay x3 seems to have several outliers in xydirection.  Overall, 

we can conclude that the Education data does contain outliers. This means the response variable y must be 

explained through a mixture of explanatory variables.   Next, we utilize the five different methods of handling 

the problem of the outliers (OLS, LMS, MM, BMM and FBM) for the dollars data. Table 4.4 contains the 

numerical summary of the fitted models (including the coefficients and the values of mean squared error).  
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Table 4.2: contains the numerical summary of the five proposed models applied on the Education Data. 

 β0 β1 β2 β3 

 OLS -6.39772895 0.01104814 0.03039559 0.16328591 

 LMS -6.7882534 0.01461188 0.03010912 0.10694682 

  MM          -5.9758597         0.009962355         0.024686046  0.171564016 

 BMM -6.347148 0.01064757 0.02721239 0.17039220 

  FBM -6.321678 0.01055311 0.02490381 0.17257998 

From Table 4.2, we notice several important points: Firstly, the FBM estimator provides the smallest value of 

MSE followed by the BMM estimator. Whereas, the OLS estimator provides the largest value of MSE. 

Secondly, the MM estimator and LMS estimator also provides smaller MSE values comparing with the OLS 

estimator, but not as good as the MSE values obtained by using the FBM estimator and the BMM estimator. 

Therefore, the analysis of the Education Data has proven that the FBM estimator is superior estimator followed 

by small margins the BMM estimator and this agreed once more with the results obtained from the simulation 

study.   

5. Summary and Conclusion    

From the simulation study, the estimated values of the mean squared errors (MSE) have supported that the 

superiority of the FBM estimator and trailed very closely by the BMM estimator, regardless to both the type of 

errors' distributions as well as with all possible sample sizes n, and in The linear regression case (p= 1 – 2, and 

5). When the outliers are in Y- direction and in the choices of the number of the explanatory variables were (p= 

1, 2, and 5 ), we have noticed the following remarks:  

1. the FBM estimator provides the smallest mean and standard deviation values of MSE followed by the BMM 

estimator. Whereas, the OLS estimator provides the largest mean and standard deviation values of MSE, 

regardless to both the type of errors' distributions as well as with all possible sample sizes n.  When the outliers 

are in X- direction and in the choices of the number of the explanatory variables were ( p= 1, 2, and 5 ), we have 

noticed the following remarks:   

1-the FBM estimator provides the smallest mean and standard deviation values of MSE followed by the BMM 

estimator, regardless to both the type of errors' distributions as well as with all possible sample sizes n.  

2-the OLS estimator provides the largest mean and standard deviation values of MSE, in the case of the 

marginal error terms belong to the t distribution and to the Exponential distribution.  

Whereas, the LMS estimator provides the largest mean and   standard deviation values of MSE, in the case of 

the marginal error terms belongs to the normal distribution and to the uniform distribution.  

When the outliers are in XY- direction and in the choices of the number of the explanatory variables were ( p= 

1, 2, and 5 ), we have noticed the following remarks:  
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1-the FBM estimator provides the smallest mean and standard deviation values of MSE followed by the BMM 

estimator. Whereas, the OLS estimator provides the largest mean and standard deviation values of MSE, 

regardless to both the type of errors' distributions as well as with all possible sample sizes n.  
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