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Abstract 

The paper presents a numerical assessment and characterization of Shape Memory Alloys (SMAs) 

thermomechanical behavior using an internal variable approach-based constitutive law. A simulation study is 

conducted to reveal the influence of the key intrinsic properties such as shape memory effect, pseudoelastic 

effect, hysteresis loop, and non-constant material functions on the loading capacity and thermal actuation of 

SMAs. The effects of initial conditions, residual strains, and high temperatures on the behavior of SMAs are 

studied through several thermomechanical loading-unloading scenarios. The results give useful indications on 

the capability of SMA materials to fully recover large strains under thermal activation, to change their properties 

reversibly through phase transformation, and to serve as actuator systems for engineering control applications. 

Keywords: Hysteresis models; pseudoelastic effect; constitutive modelling; metastable phase; shape memory 

alloys; two-way shape memory effect. 

1. Introduction  

Since discovered in 1938 [1], the Shape Memory Alloy (SMA) materials have been receiving increasingly 

attention and studies with growing effort from scientific community and engineers. 
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The particular properties of SMA materials such as Shape Memory Effect (SME), Superelasticity (SE), self-

accommodating martensite transformation, and thermal actuation, make these materials more attractive for the 

design of smart structures, innovative devices, and new intelligent materials. Nowadays, SMA materials are 

being used in cutting-edge technologies such as airplanes and rockets, automatic flow control, wireless 

communications, and biomedical applications [2-5]. From thermomechanical point of view, SMAs have 

outstanding characteristics such as large load capacity, extremely large recovery strains, enhanced fatigue 

performance, force bearing, and phase transformation-dependent elastic and thermal properties. These 

characteristics allow the integration at high degree of SMA materials into the actuation of intelligent systems [5-

10]. Over the last few decades, many phenomenological constitutive models have been developed and 

experimental characterizations have been conducted to address the behaviors observed in SMA materials [11-

17]. Among these investigations, the internal variable-based model given in [14] is the most popular and widely 

used on engineering due to the following advantages 

 Separation of martensite fraction into stress-induced and temperature-induced fractions. 

 Extensibility to materials for which the properties are functions of the state variables. 

 Use of common engineering variables and measurable properties. 

 Adaptability to any new experimental evidences. 

 Well suitable for engineering design and practical applications. 

It is worth noting that the model presented in [14] has been the subject of many interesting recent investigations 

[18-21] 

To clearly understand and more effectively simulate the characteristics of SMA materials, this paper presents a 

detailed analysis of SMA transformations using Brinson’s phenomenological model [14] with consideration of 

more critical analysis cases. The emphasis in this study is on the inherent characteristics of SMAs such as SME, 

SE, hysteresis loop, and non-constant material functions. To perform numerical simulations, the Nitinol alloy 

(Ni55Ti) SMA is used. Since discovered in 1963 [22], the Nitinol-Ti SMA has been largely used in many 

exciting and innovative engineering applications and a large number of theoretical and experimental studies 

have been conducted to characterize and reveal the key characteristics of this metastable phase material [22-26]. 

These investigations show that NiTi SMA exhibits exceptional characteristics that can be used for development 

of novel actuator systems. 

2. SMA Constitutive Behavior and Rheological Laws 

2.1. Background 

By virtue of their various characteristics, SMA materials can recover large residual permanent strains (up to 

10%) in a thermomechanical loading/unloading path as shown in Figure 1. 
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Figure 1: Schematic of phase transformation of SMA 

Two main temperature-dependent stable phase transformations characterize the behavior of SMA: low 

temperature phase “martensite” and high temperature phase “austenite”. These phase transformations are driven 

by four stress-dependent temperatures: martensite start M_s, martensite finish M_f, austenite start A_s and 

austenite finish A_f. Depending on the value of the applied heating temperature with respect to the material 

transformation temperatures, the behavior of SMA can be completely understood using the temperature T, the 

stress σ, and the strain ε, as material state variables. This behavior is graphically illustrated in Figure 2. For 

more details about phase transformation, reorientation process, strain mechanisms, and microstructural 

evolutions of SMA, the reader is referred to [14,27-31]. 

 

Figure 2: Stress-strain curves of  Ni55Ti SMA during conversion at different isothermal temperatures 
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2.2. Thermomechanical Behavior of Shape Memory Alloy Materials 

According to Tanaka’s argument, the thermomechanical behavior of SMAs can be efficiently described using 

three material state variables, i.e. mechanical strain, thermal temperature, and stage transformation. Assuming 

that the thermomechanical elastic properties and phase transformation functions are constant, Tanaka’s 

constitutive model for SMA materials is written in the rate form [32] 

    (     )    (     )    (     )                                        (1) 

where the state variables  ,  ,  , and   are the stress, strain, martensite volume fraction, and temperature of the 

material, respectively. The material coefficients  ,  , and   denote the elastic modulus, phase transformation, 

and thermoelastic property (thermal expansion), respectively. In the original form of the model (1), all the 

material coefficients are supposed to be constant yielding to a linear SMA constitutive model.  Assuming that 

the SMA has a maximum recoverable residual strain    and using the model (1) to transform an austenite phase 

(          )  to a complete martensite phase (            )  under the isothermal loading 

(            ), the phase transformation tensor   is proportional to    

                                                                              (2) 

In the general expression of the model (1), the material coefficients are defined as the second-derivative 

functions of the Helmholtz free energy [14], 

{
 
 

 
  (     )    

   

   

  (     )    
   

    

 (     )    
   

    

                                                                                (3) 

Based upon experimental studies presented in [33], it was found that the material coefficients of a SMA are 

dependent on the state  . From experimental evidences, it was fund that for one-dimensional SMA Young’s 

modulus has a strong dependence on   [13,33,34]. Based upon the separation principle, a linear form is 

proposed [13,34] 

 (     )   ( )       (     )                                           (4) 

where    and    are the Young’s moduli for 100% austenite and 100% martensite, respectively. With lack of 

firm experimental evidences about the variation of the material functions   and   with respect to the state 

variables, the following relationships for the variation of   and   with respect to   were proposed  

{
 (     )   ( )            (     )                                             

 (     )   ( )       (     )                                                        
( ) 

or equivalently 
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{
 ( )       ( )                                             

 ( )     ( ) ( )                                          
                                               ( ) 

In order to extend the constitutive law (1) to simultaneously represent the shape memory and the 

pseudoelasticity effects, the state   is subdivided into multi-variant temperature-induce    and single-variant 

stress-induced    martensite volume fractions [14] 

                                                                                   (7) 

The integration of the model (1)-(5) with (           ) as initial state yields the following final constitutive 

equation for SMA behavior  

      ( )   (  )    ( )    (  )     (    )                                 ( ) 

The different fractions in (7) are supposed to be functions of stress and temperature and can be determined for 

both martensite and austenite phases. Using the empirically based cosine model formulated from phase 

equilibrium and transformation kinetics [13], the evolutions of the fractions   and    with respect to temperature 

and stress are given by the following transformation equations [14] 

Conversion to detwinned martensite 

For      and   
     (    )      

     (    )  

    (
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Conversion to austenite 

For      and   (    )      (    )  
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In this formulation    and    are material properties which describe the relationship of temperature and critical 

stress to induce transformation, and the parameters    and    are defined by 

    
 

      

            
 

      

                                                                  (  ) 

3. SMA Constitutive Behavior and Rheological Laws 

In order to understand the outstanding properties of SMA materials, a series of numerical simulations were 

performed using different thermomechanical loading scenarios. The SMA material used for simulation is        

where the material properties are listed in Table 1 [14]. 

Table 1: Material properties of the        SMA 

Transformation 

Temperatures  

Transformation 

Stresses/Constants 

Moduli/ Constants 

             
                           

           
                             

                                         

                                  

 

3.1. Conversion to austenite  

Simulation 1: In this simulation, the temperature of a SMA material was increased from T0=20°C to T=80°C 

above Af to recover from a residual stress of ε_0=2% considering two different loading cases:  σ=0MPa  and  

σ=150MPa . The simulation was performed using the conditions given in Table 2. 

Figures 3a and Figure 3b demonstrate the inverse transformation to austenite and the free strain recovery of the 

material, respectively. The evolutions of thermomechanical characteristics of the SMA material during the 

transformation are shown in Figure 4. 
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Table 2: Initial conditions for the conversion to austenite simulation 

Parameter Value 

        

       

   [0, 150] MPa 

   0.02 

    0.5 

    0.02/0.067=0.2985 

 

                                                                                 

(a)                                                                                         (b) 

Figure 3: Free strain recovery of SMA material in inverse transformation to austenite with two different loading 

conditions: (a) and (b) free strain recovery 

 

                                                                                 

(a)                                    (b) 
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(c)                                                                                                 (d) 

 

                                                                                 

(e)                                                                                    (f) 

Figure 4: SMA properties free strain recovery in inverse transformation to austenite with two different loading 

conditions: (a) and (b) elastic modulus; (c) and ( (d) phase transformation; (e) and (f) thermal expansion 

Increasing the temperature   above the austenite-finish temperature     the SMA completely recovers initial 

residual stresses        at     as shown in Figure 4. If the material is loaded with    , the final residual 

strain    is very low than the initial strain          where    is the strain induced by  . In case of   
   

                    
          , the total initial residual strain is               , and the 
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final recovery strain is           . 

3.2. Conversion to detwinned martensite: pseudoelastic and shape memory effects  

A.  Partial pseudoelastic recovery and complete hysteresis loop 

Simulation 2: In this simulation, the thermomechanical response of the SMA material was computed for a 

complete loading/unloading path. The isothermal thermomechanical uniaxial loadings were performed at 

different temperatures from      to     . The simulation 2 was run using an initial residual strain of 

      (non-zero stress-induced martensite variable) and       . A complete hysteretic loop of SMA is 

illustrated in Figure 5 and the calculated stress-stain curves are shown in Figure 6.  

 

Figure 5: A complete SMA hysteresis loop 

 

Figure 6: SMA pseudoelastic recovery and shape memory effect under isothermal uniaxial loading 
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(a)                                                    (b) 

Figure 7: Loading capacity of SMA material versus isothermal temperature (a) stress loading, and (b) strain 

growth 

In Figure 5, a complete hysteresis response was obtained for a temperature          . Gradually 

increasing the load from zero, the austenite SMA transforms to a detwinned martensite until saturation, and then 

it recovers, during unloading, from residual strains through inverse transformation to austenite. From Figure 6, it 

can be seen clearly that:  

 Above the austenite-finish temperature, the effect of the shape memory is complete and the SMA 

exhibits a complete hysteresis loop. 

 Below the austenite-finish temperature, the effect of the shape memory is partial (partial residual strain 

recovery). 

 Above the austenite-finish temperature, the SMA recovers all residual strains. 

 Above the austenite-start temperature, the pseudoelastic recovery effect starts. 

 The stress martensite-start magnitude rises with the transformation temperature. 

 The capacity loading during hysteresis loop deceases as temperature increases above   . 

 At high temperature above   , SMA recovers large strains and maintains linear properties.  

Figure 7 shows that the loading capacity and recovered strain of SMAs are monotonically increasing functions 

versus isothermal temperature.  

B. Conversion to complete detwinned martensite  

Simulation 3: a third simulation was performed to show the capability of the SMA to transform to a complete 

detwinned martensite at a temperature     . The third simulation was run using the initial conditions shown 

in Table 3 for different temperatures           . 
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Table 3: Initial conditions for the conversion to martensite simulation with      

Parameter Value 

       

   0 

   0 MPa 

    1 

    0 

 

Figure 8: Shape memory effect during a complete martensite transformation 

 

Figure 9: Martensite fractions vs. stress for loading-unloading path 

4. Conclusion 

A numerical study was presented to understand the complex and interesting thermomechanical behavior of 

SMAs and to assess the useful properties of these materials on designing smart structures and devices such as 
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sensors, actuators, etc. The results of the present study show that SMAs can fully recover free large residual 

strains as well as considerably reduce permanent strains under mechanical loading. The maximum loading 

temperature and stress were found to be      and        , respectively. In addition, it was shown that SME 

and thermal activation are useful properties for application of SMAs as actuators in the field of engineering 

practice. Ongoing investigations will extend the analysis to SMA-based actuation systems and time-response of 

the hysteresis loop. 
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