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Abstract 

The main objective of this study is to estimate the parameters of the SUR models. A new family of biased 

estimators, called k-class that has the same asymptotic normal distribution as the Aitken generalized least 

squares (GLS) with the assumption that the covariance matrix is known. The exact bias have been studied and 

derived. 

Keywords: Seemingly unrelated regression models; K-Class estimators; Non Central Chi-Square distribution; 

Exact Bias. 

1. Introduction  

It is well known that the generalized least squares method provides best linear unbiased estimates of the 

parameters of seemingly unrelated regression model under the assumptions of Gauss-Markov theorem.  
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However, if got out of the class of linear functions and relax the condition of unbiasedness, it is possible to 

obtain an estimator (which is a nonlinear function of observations on the dependent variable and is in fact 

biased) which has a smaller mean squared error.  In fact, such an estimator has been given by [1], and more 

explicitly by [2] while considering the problem of estimating the mean vector of a multivariate normal 

distribution. It has been shown by James and Stein that their estimator is better than the usual one in the sense 

that the sum of its component wise mean squared errors is smaller than that of the other, for all parameter values 

provided at least three parameters are to be estimated.  

However, it should be noted that the sampling distribution of the improved James and Stein estimator is not 

known. 

This  paper  considered  the  estimation  of  the  parameters  of  the  general seemingly unrelated  regression  

model.  Also, the development a new family of biased estimators, namely the k-class, by using an operational 

variant of the minimum mean square error estimator which depends on unknown parameters (see [3]). The 

procedure of developing this family is simple and straightforward. The model and the unbiased estimator are 

presented in Section 2. In section 3, important functions and notations are listed. Section 4 presented the new 

proposed estimator using the k-class method. In section 5, the analysis of the exact bias is derived.  

2. The Seemingly Unrelated Regression (SUR) Model  

The basic philosophy of the SURE model is as follows. The jointness of the equations is explained by the 

structure of the SURE model and the covariance matrix of the associated disturbances. Such jointness introduces 

additional information which is over and above the information available when the individual equations are 

considered separately. So it is desired to consider all the separate relationships collectively to draw the statistical 

inferences about the model parameters. In this case, the model is, 

𝒀𝒀 = 𝑿𝑿𝑿𝑿 + 𝑼𝑼                                                                                                                                                       (2.1) 

where 𝒀𝒀 is an 𝒏𝒏 × 𝟏𝟏 vector of observations on the dependent variable, 𝑿𝑿 is an 𝒏𝒏 × 𝒑𝒑 matrix of observations on 𝒑𝒑 

explanatory variables, 𝛃𝛃  is a 𝒑𝒑 × 𝟏𝟏  parameter vector, and 𝑼𝑼  is an 𝒏𝒏 × 𝟏𝟏  disturbance vector. Let 𝒏𝒏 =  𝑻𝑻𝑻𝑻 

represents 𝑻𝑻 observations for each of the 𝑳𝑳 equations. 

The following are conventional assumptions: 

Assumption 1: The 𝑿𝑿 matrix is nonstochastic and of rank 𝒑𝒑.  

Assumption 2: The disturbance vector 𝑼𝑼 of order 𝒏𝒏 × 𝟏𝟏 is distributed as multivariate normal with mean vector 

zero and variance covariance matrix                                                 

𝐔𝐔 ∼ 𝐍𝐍(𝟎𝟎, 𝚺𝚺⨂𝑰𝑰)                                                                                                                                                   (2.2) 

where the variance covariance matrix 𝑽𝑽𝑽𝑽𝑽𝑽 (𝑼𝑼) = (𝜮𝜮⨂𝑰𝑰𝑻𝑻) with order 𝒏𝒏 × 𝒏𝒏 and 𝚺𝚺 is a known positive definite 
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matrix with order 𝑳𝑳 × 𝑳𝑳. 

Assumption 3: The sample size 𝒏𝒏 is greater than the total number of explanatory variables 𝒑𝒑; i.e. 𝒏𝒏 >  𝑝𝑝. 

[4] introduced an unbiased estimator called the generalized least squares (GLS) estimator 𝜷𝜷�𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 of 𝛽𝛽 in (2.1) as 

follows:  

𝛃𝛃�𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 = [𝐗𝐗′(𝚺𝚺−𝟏𝟏⨂𝐈𝐈)𝐗𝐗]−𝟏𝟏𝐗𝐗′(𝚺𝚺−𝟏𝟏⨂𝐈𝐈)                                                                                                           (2.3) 

[5] derived the variance covariance matrix for the 𝜷𝜷�𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺, which takes the following form: 

𝑽𝑽𝑽𝑽𝑽𝑽�𝜷𝜷�𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺� = [𝑿𝑿′(𝚺𝚺−𝟏𝟏⨂𝐈𝐈)𝐗𝐗]−𝟏𝟏                                                                                                                  (2.4) 

and proved that 𝜷𝜷�𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 is best linear unbiased estimator. 

Also, this estimator is unbiased in small samples assuming that the error terms 𝑼𝑼 have symmetric distribution. 

As for the large samples, it is consistent and asymptotically normal with limiting distribution: 

  √𝑻𝑻�𝜷𝜷�𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 − 𝜷𝜷�
𝒅𝒅
→ 𝚴𝚴�𝟎𝟎, �𝟏𝟏

𝑻𝑻
𝑿𝑿′(𝚺𝚺−𝟏𝟏⨂𝐈𝐈)𝐗𝐗�

−𝟏𝟏
�                                                                         

In other words, the 𝐸𝐸�𝜷𝜷�𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺� = 𝜷𝜷, and 𝐸𝐸�𝜷𝜷�𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 − 𝜷𝜷��𝜷𝜷�𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 − 𝜷𝜷�′ = �𝟏𝟏
𝑻𝑻
𝑿𝑿′(𝚺𝚺−𝟏𝟏⨂𝐈𝐈)𝐗𝐗�

−𝟏𝟏
. 

3.  Preliminaries 

This section is dedicated to list some definitions and notations needed for the research completion. 

3.1. Definitions 

Definition 1: Confluent Hypergeometric Function in the series form from [6]: 

1𝑭𝑭1(𝒂𝒂; 𝒄𝒄; 𝝀𝝀) = ∑ 𝝀𝝀𝒊𝒊

𝒊𝒊!
∞
𝒊𝒊=𝟎𝟎

(𝒂𝒂)𝒊𝒊
(𝒄𝒄)𝒊𝒊

                                                                                                                                     

where (𝑎𝑎)𝑖𝑖 and (𝑐𝑐)𝑖𝑖 are Pochhammer symbols.  

Also, 1𝑭𝑭1(𝒂𝒂; 𝒂𝒂; 𝝀𝝀) = 𝒆𝒆𝝀𝝀 

The Integral form is represented as follows, 

1𝑭𝑭1(𝒂𝒂; 𝒄𝒄; 𝝀𝝀) = 𝚪𝚪(𝒄𝒄)
𝚪𝚪(𝒄𝒄−𝒂𝒂)𝚪𝚪(𝒂𝒂) ∫ 𝒆𝒆𝝀𝝀𝝀𝝀𝒕𝒕𝒂𝒂−𝟏𝟏(𝟏𝟏 − 𝒕𝒕)𝒄𝒄−𝒂𝒂−𝟏𝟏 𝒅𝒅𝒅𝒅𝟏𝟏

𝟎𝟎                                                                                           (3.1)          
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Definition 2: 

𝒇𝒇𝝁𝝁,𝒗𝒗 =
𝚪𝚪(𝒓𝒓𝟐𝟐+𝝁𝝁)

𝚪𝚪(𝒓𝒓𝟐𝟐+𝒗𝒗)
𝒆𝒆−𝝀𝝀1𝑭𝑭1(𝒓𝒓

𝟐𝟐
+ 𝝁𝝁; 𝒓𝒓

𝟐𝟐
+ 𝒗𝒗; 𝝀𝝀), and 𝒗𝒗 − 𝝁𝝁 > 0                                                                                       (3.2) 

Definition 3: 

𝝏𝝏
𝝏𝝏𝝏𝝏
𝒇𝒇𝝁𝝁,𝒗𝒗 = 𝒇𝒇𝝁𝝁+𝟏𝟏,𝝊𝝊 − 𝒇𝒇𝝁𝝁,𝝂𝝂                                                                                                                                        (3.3) 

and  

𝝏𝝏𝟐𝟐

𝝏𝝏𝝀𝝀𝟐𝟐
𝒇𝒇𝝁𝝁,𝒗𝒗 = 𝒇𝒇𝝁𝝁+𝟐𝟐,𝝂𝝂 − 𝟐𝟐𝒇𝒇𝝁𝝁+𝟏𝟏,𝝊𝝊 + 𝒇𝒇𝝁𝝁,𝝂𝝂                                                                                                                     (3.4) 

3.2. Notations 

The following are some facts proven in the literature concerning the non-central chi square 𝜒𝜒2 distribution. 

I. According to [7], [8] and [9], If 𝑿𝑿~𝑵𝑵𝒏𝒏(𝝁𝝁, 𝚺𝚺), 𝚺𝚺 > 0, then 𝑸𝑸 = 𝑿𝑿′𝑨𝑨𝑨𝑨 + 𝒅𝒅~𝝌𝝌𝒓𝒓,𝝀𝝀
𝟐𝟐  where 𝒓𝒓 is the degree of 

freedom, 𝒅𝒅 is a scalar and 𝝀𝝀 = 𝟏𝟏
𝟐𝟐
𝝁𝝁′𝑨𝑨𝑨𝑨 + 𝒅𝒅  is the noncentrality parameter under the following conditions: 

(i) 𝑨𝑨 = 𝑨𝑨′ 

(ii) 𝑨𝑨𝚺𝚺𝑨𝑨 = 𝑨𝑨 

(iii) 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑨𝑨𝚺𝚺) = 𝒓𝒓                                                                                                                                           (3.5) 

II. According to [8], and [10], the probability density function of the non-central chi square distribution (𝑟𝑟, 𝜆𝜆) is 

as follows: 

𝒇𝒇�𝑸𝑸 = 𝝌𝝌𝒓𝒓,𝝀𝝀
𝟐𝟐 � = 𝒆𝒆−𝝀𝝀 ∑ 𝝀𝝀𝒊𝒊

𝒊𝒊!
∞
𝒊𝒊=𝟎𝟎

𝑸𝑸�
𝒓𝒓+𝟐𝟐𝟐𝟐
𝟐𝟐 �−𝟏𝟏𝒆𝒆

−𝑸𝑸
𝟐𝟐

𝟐𝟐�
𝒓𝒓+𝟐𝟐𝟐𝟐
𝟐𝟐 �𝚪𝚪�𝒓𝒓+𝟐𝟐𝟐𝟐𝟐𝟐 �

 , and 𝑄𝑄 > 0                                                                                         (3.6) 

where the degrees of freedom is 𝑟𝑟, and 𝜆𝜆 is the noncentrality parameter.     

III. According to [11], provided that 𝒓𝒓
𝟐𝟐

> 𝑠𝑠, the 𝑠𝑠-th inverse moments of the non-central chi square 𝑸𝑸 is as 

follows, 

𝑬𝑬(𝑸𝑸−𝒔𝒔) = 𝟐𝟐−𝒔𝒔
𝚪𝚪(𝐫𝐫𝟐𝟐−𝐬𝐬)

𝚪𝚪(𝐫𝐫𝟐𝟐)
𝒆𝒆−𝝀𝝀 ∑ 𝝀𝝀𝒊𝒊

𝒊𝒊!
∞
𝒊𝒊=𝟎𝟎

(𝒓𝒓𝟐𝟐−𝒔𝒔)𝒊𝒊
(𝒓𝒓𝟐𝟐)𝒊𝒊

= 𝟐𝟐−𝒔𝒔
𝚪𝚪(𝐫𝐫𝟐𝟐−𝐬𝐬)

𝚪𝚪(𝐫𝐫𝟐𝟐)
𝒆𝒆−𝝀𝝀1𝑭𝑭1(𝒓𝒓

𝟐𝟐
− 𝒔𝒔; 𝒓𝒓

𝟐𝟐
; 𝝀𝝀).                                                                                            (3.7) 

for 𝒔𝒔 = 0,1,2,…, and 𝒓𝒓 = 1,2,…. 

where 1𝑭𝑭1 (   ) is the confluent hypergeometric function defined in (3.1) 
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IV. According to [9], the derivatives of 𝑬𝑬(𝑸𝑸−𝒔𝒔) with respect to 𝝀𝝀 is as follows, 

𝝏𝝏𝒎𝒎

𝝏𝝏𝝀𝝀𝒎𝒎
𝑬𝑬(𝑸𝑸−𝒔𝒔) = 𝟐𝟐−𝒔𝒔(−𝟏𝟏)𝒎𝒎 𝚪𝚪(𝒔𝒔+𝒎𝒎)

𝚪𝚪(𝒔𝒔)

𝚪𝚪(𝒓𝒓𝟐𝟐−𝒔𝒔)

𝚪𝚪(𝒓𝒓𝟐𝟐+𝒎𝒎)
𝒆𝒆−𝝀𝝀1𝑭𝑭1(𝒓𝒓

𝟐𝟐
− 𝒔𝒔; 𝒓𝒓

𝟐𝟐
+ 𝒎𝒎; 𝝀𝝀)                                                                      (3.8) 

for 𝒔𝒔 = 1,2,…, and 𝒎𝒎 = 1,2,... 

4.  The K-Class Estimator 

The k-class estimators have been studied in the literature extensively by so many researchers ([11], [12], [13], 

etc). Latter, it was mentioned in the literature that the k-class estimator is biased and has a smaller mean squared 

error. In this section, a proposed k-class estimator is derived. 

Proposition (1):  

The family of k-class estimators of 𝜷𝜷, 𝒃𝒃� is 

𝒃𝒃� = �𝟏𝟏 − 𝒌𝒌 𝒀𝒀′𝑯𝑯𝑯𝑯
𝟏𝟏+𝒀𝒀′𝑯𝑯𝑯𝑯

� 𝜷𝜷�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆                                                                                                                                  (4.1) 

where k is an arbitrary constant. For k = 0, the k-class estimator will be the Zellner’s seemingly unrelated 

regression estimator 𝒃𝒃� = 𝜷𝜷�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and note that 

𝟎𝟎 ≤
𝒀𝒀′𝑯𝑯𝑯𝑯

𝟏𝟏 + 𝒀𝒀′𝑯𝑯𝑯𝑯
≤ 𝟏𝟏 

Proof: Let the model, 

𝑷𝑷𝑷𝑷 = 𝑷𝑷𝑷𝑷𝑷𝑷 + 𝑷𝑷𝑷𝑷                                                                                                                                               (4.2) 

where P is 𝑛𝑛 × 𝑛𝑛 matrix such that 𝑷𝑷′𝑷𝑷 = 𝚺𝚺−𝟏𝟏⨂𝐈𝐈. The existence of such P is from the fact that 𝚺𝚺 is positive 

definite matrix. 

Write the new model: 

𝒀𝒀∗ = 𝑿𝑿∗𝜷𝜷 + 𝑼𝑼∗                                                                                                                                                   (4.3)                                                                                             

where 𝒀𝒀∗ = 𝑷𝑷𝑷𝑷, 𝑿𝑿∗ = 𝑷𝑷𝑷𝑷, and 𝑼𝑼∗ = 𝑷𝑷𝑷𝑷. 

𝑬𝑬(𝑼𝑼∗) = 𝑷𝑷𝑷𝑷(𝑼𝑼) = 𝟎𝟎𝒏𝒏×𝟏𝟏 and  𝐶𝐶𝐶𝐶𝐶𝐶(𝑼𝑼∗) = 𝑬𝑬(𝑷𝑷𝑷𝑷𝑼𝑼′𝑷𝑷′) = 𝑷𝑷𝑷𝑷(𝑼𝑼𝑼𝑼′)𝑷𝑷′ = 𝑷𝑷(𝚺𝚺⨂𝐈𝐈)𝐏𝐏′ = 𝑰𝑰𝒏𝒏. 

Define a class of linear estimators 𝜷𝜷∗ = 𝑨𝑨𝒀𝒀∗where 𝑨𝑨 is an arbitrary 𝒑𝒑 ×  𝒏𝒏 matrix. The mean squared error 

matrix 𝚿𝚿𝐩𝐩×𝐩𝐩 of 𝜷𝜷∗is given by 
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𝚿𝚿𝐩𝐩×𝐩𝐩 = 𝐄𝐄(𝜷𝜷∗ − 𝜷𝜷)(𝜷𝜷∗ − 𝜷𝜷)′ = 𝑬𝑬��𝑨𝑨𝑿𝑿∗ − 𝑰𝑰𝒑𝒑�𝜷𝜷 + 𝑨𝑨𝑼𝑼∗���𝑨𝑨𝑿𝑿∗ − 𝑰𝑰𝒑𝒑�𝜷𝜷 + 𝑨𝑨𝑼𝑼∗�′

= �𝑨𝑨𝑿𝑿∗ − 𝑰𝑰𝒑𝒑�𝜷𝜷𝜷𝜷′�𝑨𝑨𝑿𝑿∗ − 𝑰𝑰𝒑𝒑�
′ + �𝑨𝑨𝑿𝑿∗ − 𝑰𝑰𝒑𝒑�𝜷𝜷𝜷𝜷(𝑼𝑼∗)𝑨𝑨 + 𝑨𝑨𝑨𝑨(𝑼𝑼∗)𝜷𝜷′�𝑨𝑨𝑿𝑿∗ − 𝑰𝑰𝒑𝒑�

′

+ 𝑨𝑨𝑨𝑨(𝑼𝑼∗𝑼𝑼∗′)𝑨𝑨′ 

and since 𝑬𝑬(𝑼𝑼∗) = 𝟎𝟎𝒏𝒏×𝟏𝟏 and  𝑪𝑪𝑪𝑪𝑪𝑪(𝑼𝑼∗) = 𝑰𝑰𝒏𝒏 then, 𝚿𝚿𝐩𝐩×𝐩𝐩 = �𝑨𝑨𝑿𝑿∗ − 𝑰𝑰𝒑𝒑�𝜷𝜷𝜷𝜷′�𝑨𝑨𝑿𝑿∗ − 𝑰𝑰𝒑𝒑�
′ + 𝑨𝑨𝑨𝑨′. 

Choose 𝑨𝑨 such that 𝚿𝚿𝐩𝐩×𝐩𝐩 is minimum by differentiating 𝚿𝚿𝐩𝐩×𝐩𝐩with respect to 𝑨𝑨, 

𝜕𝜕𝚿𝚿𝐩𝐩×𝐩𝐩
𝜕𝜕𝑨𝑨𝐩𝐩×𝐧𝐧

= 𝟐𝟐𝑨𝑨𝑿𝑿∗𝜷𝜷𝜷𝜷′𝑿𝑿∗′ − 𝜷𝜷𝜷𝜷′𝑿𝑿∗′ + 𝟐𝟐𝟐𝟐 = 𝟎𝟎, and solve for A: 

𝑨𝑨 = 𝜷𝜷𝜷𝜷′𝑿𝑿∗′[𝑿𝑿∗𝜷𝜷𝜷𝜷′𝑿𝑿∗′ + 𝑰𝑰]−𝟏𝟏                                                                                                                            (4.4) 

Hence, 𝜷𝜷∗ = 𝜷𝜷𝜷𝜷′𝑿𝑿∗′(𝑿𝑿∗𝜷𝜷𝜷𝜷′𝑿𝑿∗′ + 𝑰𝑰𝒏𝒏)−𝟏𝟏𝒀𝒀∗ 

Further, 𝜷𝜷∗ can be rewritten by expanding (𝑿𝑿∗𝜷𝜷𝜷𝜷′𝑿𝑿∗′ + 𝑰𝑰𝒏𝒏)−𝟏𝟏 as in [14] as follows: 

𝜷𝜷∗ = [
𝜷𝜷′𝑿𝑿∗′𝒀𝒀∗

𝟏𝟏 + 𝜷𝜷′𝑿𝑿∗′𝑿𝑿∗𝜷𝜷
]𝜷𝜷 = �

𝜷𝜷′𝑿𝑿′(𝜮𝜮−𝟏𝟏⨂𝑰𝑰)𝒀𝒀
𝟏𝟏 + 𝜷𝜷′𝑿𝑿′(𝜮𝜮−𝟏𝟏⨂𝑰𝑰)𝑿𝑿𝑿𝑿

�𝜷𝜷 

Using the 𝑿𝑿𝑿𝑿 = 𝒀𝒀 − 𝑼𝑼, then 

𝜷𝜷∗ = �
(𝒀𝒀 − 𝑼𝑼)′(𝚺𝚺−𝟏𝟏⨂𝐈𝐈)𝐘𝐘

𝟏𝟏 + (𝒀𝒀 − 𝑼𝑼)′(𝚺𝚺−𝟏𝟏⨂𝐈𝐈)(𝒀𝒀 − 𝑼𝑼)�𝜷𝜷 

Replace 𝑼𝑼, 𝜷𝜷 by 𝒆𝒆, 𝜷𝜷�𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 , this will result in 𝒃𝒃� as follows 

𝒃𝒃� = � (𝒀𝒀−𝒆𝒆)′(𝚺𝚺−𝟏𝟏⨂𝐈𝐈)𝐘𝐘
𝟏𝟏+(𝒀𝒀−𝒆𝒆)′(𝚺𝚺−𝟏𝟏⨂𝐈𝐈)(𝒀𝒀−𝒆𝒆)

� 𝜷𝜷�𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔                                                                                                                         (4.5) 

Expanding (4.4): 

𝒃𝒃� = �
𝒀𝒀′𝑯𝑯𝑯𝑯

𝟏𝟏 + 𝒀𝒀′𝑯𝑯𝑯𝑯
�𝜷𝜷�𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 

Note that,  𝑯𝑯 is a positive definite matrix and takes the following form 

𝑯𝑯 = (𝚺𝚺−𝟏𝟏⨂𝐈𝐈)𝐗𝐗[𝑿𝑿′(𝚺𝚺−𝟏𝟏⨂𝐈𝐈)𝐗𝐗]−𝟏𝟏𝑿𝑿′(𝚺𝚺−𝟏𝟏⨂𝐈𝐈) 

5.  The Exact Bias of 𝒃𝒃� 

In this section, the exact formula for the bias of the k-class estimator for the seemingly unrelated regression 

(SUR) model is derived. This section along with the proposed estimator is considered as the major contribution 

of this study. 



International Journal of Sciences: Basic and Applied Research (IJSBAR)(2016) Volume 26, No  2, pp 94-103 

100 
 

The sampling error of the estimator in (2.20) can be written in the following equation, 

𝒃𝒃� − 𝜷𝜷 = 𝜷𝜷� − 𝜷𝜷 − 𝒌𝒌( 𝒀𝒀′𝑯𝑯𝑯𝑯
𝟏𝟏+𝒀𝒀′𝑯𝑯𝑯𝑯

)𝜷𝜷�                                                                                                                           (5.1) 

Let 𝒄𝒄 = 𝒀𝒀′𝑯𝑯𝑯𝑯
𝟏𝟏+𝒀𝒀′𝑯𝑯𝑯𝑯

 

Then, 𝒃𝒃� − 𝜷𝜷 = 𝜷𝜷� − 𝜷𝜷 − 𝒌𝒌𝒌𝒌𝜷𝜷�                                                                                                                             (5.2) 

Also 𝒄𝒄 can be written as follows: 

𝒄𝒄 = 𝒀𝒀∗′𝐍𝐍𝐘𝐘∗

𝟏𝟏+𝒀𝒀∗′𝐍𝐍𝐘𝐘∗
= 𝟏𝟏 − 𝟏𝟏

𝟏𝟏+𝒀𝒀∗′𝐍𝐍𝐘𝐘∗
 where 𝑵𝑵 = 𝐗𝐗∗[𝑿𝑿∗′𝐗𝐗∗]−𝟏𝟏𝑿𝑿∗′ is an 𝒏𝒏 × 𝒏𝒏  idempotent matrix with rank 𝒑𝒑. 

Lemma (1): 𝑬𝑬(𝒄𝒄) = 𝟏𝟏 − 𝟐𝟐−𝟏𝟏𝒇𝒇−𝟏𝟏,𝟎𝟎 

Proof: 𝑬𝑬(𝒄𝒄) = 𝑬𝑬 �𝟏𝟏 − 𝟏𝟏
𝟏𝟏+𝒀𝒀∗′𝑵𝑵𝒀𝒀∗

� = 𝟏𝟏 − 𝑬𝑬( 𝟏𝟏
𝟏𝟏+𝒀𝒀∗′𝑵𝑵𝒀𝒀∗

) 

From (3.5) assuming 𝑑𝑑 = 1, 𝐴𝐴 = 𝑁𝑁, Σ = 𝐼𝐼, and N is an idempotent matrix with rank 𝒑𝒑, then  

𝑸𝑸 = 𝟏𝟏 + 𝒀𝒀∗′𝐍𝐍𝐘𝐘∗~𝛘𝛘𝐩𝐩,𝛌𝛌
𝟐𝟐                                                                                                                                         (5.3) 

where 𝛘𝛘𝐩𝐩,𝛌𝛌
𝟐𝟐  represents the noncentral chi-square distribution with the d.f. 𝒑𝒑  and the noncentrality parameter 

𝛌𝛌 = (𝟏𝟏 + 𝟏𝟏
𝟐𝟐
𝛍𝛍∗′𝛍𝛍∗). 

According to (3.2) and (3.7) then, (5.3) can be rewritten as follows 

𝑬𝑬(𝒄𝒄) = 𝟏𝟏 − 𝑬𝑬(𝑸𝑸−𝟏𝟏) = 𝟏𝟏 − 𝟐𝟐−𝟏𝟏
𝚪𝚪(𝐩𝐩𝟐𝟐−𝟏𝟏)

𝚪𝚪(𝐩𝐩𝟐𝟐)
𝒆𝒆−𝝀𝝀1𝑭𝑭1�

𝒑𝒑
𝟐𝟐
− 𝟏𝟏; 𝒑𝒑

𝟐𝟐
; 𝝀𝝀� = 𝟏𝟏 − 𝟏𝟏

𝟐𝟐
𝒇𝒇−𝟏𝟏,𝟎𝟎                                                       (5.4) 

given that  𝒑𝒑
𝟐𝟐

> 1. 

Lemma (2): 𝝏𝝏
𝝏𝝏𝝁𝝁∗′

𝑬𝑬(𝒄𝒄) = 𝝁𝝁∗𝒇𝒇−𝟏𝟏,𝟏𝟏 

Proof: Using (3.3) 

 𝝏𝝏
𝝏𝝏𝝁𝝁∗′

𝑬𝑬(𝒄𝒄) = − 𝝏𝝏
𝝏𝝏𝝁𝝁∗′

𝑬𝑬(𝑸𝑸−𝟏𝟏) = − 𝝏𝝏
𝝏𝝏𝝏𝝏
𝑬𝑬(𝑸𝑸−𝟏𝟏) 𝝏𝝏𝝏𝝏

𝝏𝝏𝛍𝛍∗′
= 𝝁𝝁∗𝒇𝒇−𝟏𝟏,𝟏𝟏.                                                                              (5.5) 

Lemma (3): 𝑬𝑬(𝒄𝒄𝒀𝒀∗) = 𝛍𝛍∗𝒇𝒇−𝟏𝟏,𝟏𝟏 + 𝝁𝝁∗(𝟏𝟏 − 𝟐𝟐−𝟏𝟏𝒇𝒇−𝟏𝟏,𝟎𝟎)  

Proof: 
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Write 𝐜𝐜𝐘𝐘∗ = 𝐜𝐜(𝐘𝐘∗ − 𝛍𝛍∗) + 𝛍𝛍∗𝐜𝐜, then 

𝑬𝑬(𝒄𝒄𝐘𝐘∗) = 𝑬𝑬(𝒀𝒀∗ − 𝝁𝝁∗)𝒄𝒄 + 𝝁𝝁∗𝑬𝑬(𝒄𝒄) = (𝟐𝟐𝟐𝟐)
−𝒏𝒏
𝟐𝟐 � (𝒀𝒀∗ − 𝝁𝝁∗)𝒄𝒄

𝒀𝒀∗
 𝒆𝒆𝒆𝒆𝒆𝒆 �−

𝟏𝟏
𝟐𝟐

(𝒀𝒀∗ − 𝝁𝝁∗)′(𝒀𝒀∗ − 𝝁𝝁∗)� 𝒅𝒅𝒀𝒀∗ + 𝝁𝝁∗𝑬𝑬(𝒄𝒄) 

=  𝝏𝝏
𝝏𝝏𝝁𝝁∗

𝑬𝑬(𝒄𝒄) + 𝝁𝝁∗𝑬𝑬(𝒄𝒄)                                                                                                                                         (5.6) 

Using Lemma (1) and (2),  

𝑬𝑬(𝒄𝒄𝐘𝐘∗) = 𝛍𝛍∗𝒇𝒇−𝟏𝟏,𝟏𝟏 + 𝝁𝝁∗(𝟏𝟏 − 𝟐𝟐−𝟏𝟏𝒇𝒇−𝟏𝟏,𝟎𝟎). 

Theorem: The exact bias of the k-class estimator of β for p > 2 is given by 

𝑬𝑬�𝒃𝒃� − 𝜷𝜷� = −𝒌𝒌𝒌𝒌�𝟏𝟏 − 𝟐𝟐−𝟏𝟏𝒇𝒇−𝟏𝟏,𝟎𝟎 +  𝒇𝒇−𝟏𝟏,𝟏𝟏� 

where 𝐟𝐟−𝟏𝟏,𝟎𝟎 is as given in (3.3) for 𝛍𝛍 = −𝟏𝟏, and 𝛎𝛎 = 𝟎𝟎 

Proof: From (5.2), write 

𝑬𝑬(𝒃𝒃� − 𝜷𝜷) = −𝒌𝒌𝒌𝒌(𝒄𝒄𝜷𝜷�)                                                                                                                                       (5.7) 

By Expanding 𝛃𝛃�𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 = [𝐗𝐗∗′𝐗𝐗∗]−𝟏𝟏𝐗𝐗∗′𝐘𝐘∗ 

Then,  

𝑬𝑬(𝒃𝒃� − 𝜷𝜷) = −𝒌𝒌[𝐗𝐗∗′𝐗𝐗∗]−𝟏𝟏𝐗𝐗∗′𝑬𝑬(𝒄𝒄𝐘𝐘∗)                                                                                                                (5.8) 

where 𝐘𝐘∗~𝑵𝑵𝑻𝑻𝑻𝑻(𝝁𝝁∗, 𝐈𝐈𝐓𝐓𝐓𝐓) and 𝝁𝝁∗ = 𝑿𝑿∗𝜷𝜷 = 𝑷𝑷𝑷𝑷𝑷𝑷 from (4.3). From lemma (3),  

𝑬𝑬�𝒃𝒃� − 𝜷𝜷� = −𝒌𝒌[𝐗𝐗∗′𝐗𝐗∗]−𝟏𝟏𝐗𝐗∗′�𝛍𝛍∗𝒇𝒇−𝟏𝟏,𝟏𝟏 + 𝝁𝝁∗(𝟏𝟏 − 𝟐𝟐−𝟏𝟏𝒇𝒇−𝟏𝟏,𝟎𝟎)� = −𝒌𝒌𝒌𝒌�𝟏𝟏 − 𝟐𝟐−𝟏𝟏𝒇𝒇−𝟏𝟏,𝟎𝟎 +  𝒇𝒇−𝟏𝟏,𝟏𝟏�. 

Lemma (4): The simplified form for the exact bias of the k-class estimator of β for p > 2 is given by  

𝑬𝑬�𝒃𝒃� − 𝜷𝜷� = −
𝟏𝟏
𝟐𝟐
𝒌𝒌𝒌𝒌 

Proof: From (3.3), write 

𝑬𝑬(𝒄𝒄𝐘𝐘∗) = 𝛍𝛍∗ �𝟏𝟏 − 𝟏𝟏
𝟐𝟐
𝒇𝒇−𝟏𝟏,𝟎𝟎� −

𝟏𝟏
𝟐𝟐
𝝁𝝁∗�𝒇𝒇𝟎𝟎,𝟎𝟎 − 𝒇𝒇−𝟏𝟏,𝟎𝟎� = 𝛍𝛍∗(𝟏𝟏 − 𝟏𝟏

𝟐𝟐
𝒇𝒇𝟎𝟎,𝟎𝟎)                                                                  (5.9) 

According to (3.2), taking 𝛍𝛍 = 𝟎𝟎, and 𝛎𝛎 = 𝟎𝟎 then, 
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 𝒇𝒇𝟎𝟎,𝟎𝟎 =
𝚪𝚪(𝒓𝒓𝟐𝟐)

𝚪𝚪(𝒓𝒓𝟐𝟐)
𝒆𝒆−𝝀𝝀1𝑭𝑭1�

𝒓𝒓
𝟐𝟐

; 𝒓𝒓
𝟐𝟐

; 𝝀𝝀� = 𝒆𝒆−𝝀𝝀𝒆𝒆𝝀𝝀 = 𝟏𝟏. 

This means that the exact bias of the k-class estimator is written as follows: 

𝑬𝑬�𝒃𝒃� − 𝜷𝜷� = −𝒌𝒌[𝐗𝐗∗′𝐗𝐗∗]−𝟏𝟏𝐗𝐗∗′𝛍𝛍∗ �𝟏𝟏 − 𝟏𝟏
𝟐𝟐
𝒇𝒇𝟎𝟎,𝟎𝟎� = − 𝟏𝟏

𝟐𝟐
𝒌𝒌𝒌𝒌. 

Corollary:  

(a)The k-class estimator 𝒃𝒃� is unbiased only for 𝒌𝒌 = 𝟎𝟎 and in this case it is the GLS estimator 𝜷𝜷�𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔.      

(b) The exact bias of the 𝒃𝒃� is a decreasing function of 𝒌𝒌. 

6. Conclusion 

This study has derived a new estimator to the seemingly unrelated regression models which is biased and have 

the same asymptotic normal distribution as the Aitken generalized least squares (GLS) with the assumption that 

the covariance matrix is known. It has been shown that the new estimator is a special case of the unbiased 

estimator called the generalized least squares (GLS) estimator 𝜷𝜷�𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺. Also the new estimator has a decreasing 

bias function in the 𝒌𝒌. 
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