
 

International Journal of Sciences: 

Basic and Applied Research 

(IJSBAR) 

 

ISSN 2307-4531 
(Print & Online) 

 
https://gssrr.org/index.php/JournalOfBasicAndApplied/index  

--------------------------------------------------------------------------------------------------------------------------- 

141 
 

Identification of Epithelial-mesenchymal Transition-

related Genes and Potential Biomarkers for 

Bronchopulmonary Dysplasia using Bioinformatical 

Analysis 

Xiaohong He
a
, Zongli Zhang

b
, Shibing Xi

c*
1wo 

a,c
Department of Pediatrics, Affiliated Hubei University of Medicine, Shiyan, Hubei,442000, China 

b
Institute of Pediatric Diseases, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, Hubei, 

442000, China 

c
Department of Pediatrics, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, Hubei, 442000, 

China. 

a
Email: 903066040@qq.com, 

b
Email:  zzl@hbmu.edu.cn 

c
Email: xishibing2009@163.com 

Abstract 

Bronchopulmonary dysplasia (BPD) is a prevalent and serious disease among preterm newborns. Epithelial-

mesenchymal transition (EMT) represents the biological process where cells switch from an epithelial to 

mesenchymal phenotype. Hyperoxia induces EMT in alveolar epithelial cells, which can affect alveolar 

development. However, the specific molecular mechanism of EMT in BPD remains incompletely unclear. In 

this study, the GSE108754 and GSE32472 datasets were merged and de-batched, with external validation from 

GSE188944 and GSE51039. Differentially Expressed Genes (DEGs) were screened, focusing on those 

associated with EMT using the GeneCards database, resulting in the identification of 213 overlapping genes. 

Weighted gene co-expression network analysis (WGCNA) revealed that the turquoise module was strongly 

correlated with BPD, identifying 33 hub genes related to EMT in BPD patients.  
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Utilizing support vector machine (SVM) and random forest recursive feature elimination (RF-RFE) methods, 17 

potential biomarkers were assessed. Risk prediction performance was evaluated through a nomogram model and 

receiver operating characteristic (ROC) analysis. Notably, FLOT2, AQP9, SEMA4A, and CXCR1 emerged as 

vital genes, with RT-qPCR validation indicating their mRNA levels significantly increased in BPD. In 

summary, four biomarkers, FLOT2, AQP9, SEMA4A, and CXCR1, were potentially critical in BPD occurrence 

and progression, shedding novel light on diagnosing and treating BPD. 

Keywords: Bronchopulmonary dysplasia; Epithelial-mesenchymal transition; Weighted gene co-expression 

network analysis; Machine learning; Bioinformatic analysis. 

1. Introduction  

Bronchopulmonary dysplasia (BPD) represents a chronic respiratory disorder commonly observe in premature 

infants[1]. As medical advancements lead to increased survival rates for very low-birth-weight infants, BPD 

rates have also increased[2]. Patients with BPD usually face a grim prognosis, with the potential for long-term 

effects extending into adulthood, including severe neurodevelopmental disorders and compromised lung 

function, bringing great burdens on families and society[3]. The histopathology and pathogenic mechanisms of 

BPD are complex and incompletely comprehended, and there is a lack of safe and efficient prevention or 

clinical treatments[4]. As a result, it is urgently necessary to delve into the BPD pathogenic mechanism and 

explore potential treatments.  

Epithelial-mesenchymal transition (EMT) is a complex biological procedure, involving the epithelial polarity 

reversal and mesenchymal characteristics acquisition by epithelial cells[5, 6]. EMT is a key player in embryonic 

development, tissue fibrosis wound healing, and cancer metastasis[7], accompanied by elevated protein and 

mRNA expression of N-cadherin and α-Smooth muscle actin(α-SMA), and decreased expression of E-cadherin. 

An increasing number of evidence suggests that EMT may be beneficial for the development of BPD by 

influencing alveolar epithelial cell structure and function. For example, EMT in alveolar epithelial cells can 

result in alveolar wall thickening and lumen reduction, influencing gas exchange efficiency[8]. A study 

observed that hyperoxia-induced differentiation of lung type II cells into fibroblasts through EMT impairs 

alveolar development[6]. Yang and his colleagues have reported that EMT also influences BPD development[9]. 

However, the precise relationship between BPD and EMT needs to be further investigated.  

FLOT2, AQP9, SEMA4A, and CXCR1 were analyzed in this study using bioinformatics methods to examine 

their role in the progression of BPD. Four distinct biomarkers were discovered and assessed for their diagnostic 

efficacy in BPD patients. Furthermore, potential signaling pathways related to the progression of BPD were 

clarified. Moreover, the findings of this study offer a novel insight into the association of EMT with BPD. 

2. Materials and methods 

2.1. Data collection 

GSE108754[10], GSE32472[11], GSE188944[12], and GSE51039[13] consisted of four gene expression 

microarray datasets were obtained in the GEO database (http://www.ncbi.nlm.nih.gov/geo/). Microarray profiles 
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for blood specimens from BPD neonates are available in the GSE108754, GSE32472, and GSE188944 datasets, 

while expression data from mice exposed to hyperoxia is included in the GSE51039 dataset. Detailed 

information on the datasets is displayed in Table 1. 

Table 1: Summary of BPD microarray datasets from the GEO database 

Series Platform BPD samples NonBPD samples Organism Data type 

GSE108754 GPL13497 5 6 Homo sapiens Microarray 

GSE32472 GPL6244 182 112 Homo sapiens Microarray 

GSE188944 GPL14951 6 17 Homo sapiens Microarray 

GSE51039 GPL6246 6 6 Homo sapiens Microarray 

 

2.2. Data processing and differentially expressed genes (DEGs) overlapping gene analysis 

The 'sva' package's combat function was used to eliminate batch effects[14] of GSE108754 and GSE32472 

mRNA microarray datasets, which were merged and normalized. On this basis, 'limma' package in R was 

adopted for identifying DEGs[15] upon the thresholds of p < 0.05 and log FC > 0.3. External validation was 

performed using the GSE188944 and GSE51039 datasets. The GeneCards database, which provides detailed 

information on human genes[16, 17], was applied to identify genes associated with EMT that had a relevance 

score greater than 1. 'Venn diagram' package was utilized to identify intersected genes of the merged datasets 

with EMT-related genes. In addition, R software 'pheatmap' and 'ggplot2' packages were used for visualizing 

Heatmap and volcano plots for DEGs. The identified overlapping genes were selected for further analysis. 

2.3. Immune infiltration analysis via CIBERSORT 

CIBERSORT a method which can be applied to estimate the cell composition of intricate tissues using gene 

expression data[18, 19]. Based on the combined data set, CIBERSORT algorithm was adopted for predicting the 

abundance of 22 infiltrating immune cells in each sample. Afterwards, R software 'ggplot2' and 'ggpubr' were 

used for visualizing and comparing immune cell infiltration degrees between BPD and normal samples. 

2.4. Construction of weighted gene co-expression networks 

Weighted Gene Co-expression Network Analysis (WGCNA) refers to an approach that categorizes genes in 

microarray samples into modules in accordance with their correlation. By associating these modules with trait 

samples, relevant modules for targeted therapy or biomarkers can be detected[20]. 'WGCNA' package was 

utilized to build the co-expression network in this study[20, 21] and modules most relevant to Epithelial-

Mesenchymal Transition (EMT) were identified. Initially, outliers were detected by generating the sample-

clustering tree. Then, ‘WGCNA' package calculated gene co-expression matrices based on Pearson's correlation 

coefficients among gene pairs. A soft threshold power (β) was chosen to ensure independence and average 

connectivity degree within co-expression modules. Using the scale-free network, the soft threshold of 15 was 
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utilized for constructing the scale-free co-expression network. To explore the relationship between gene feature 

of modules and the disease phenotype, a dendrogram was created using hierarchical clustering. The module with 

the highest correlation coefficient and smallest p-value was detected as the disease characteristic. Gene 

significance (GS) of the trait of every gene and module membership (MM) within one module was determined. 

MM reflects the relationship of genes with module eigengenes, implying that genes in the modules were 

reliable. Core genes were filtered based on GS > 0.5 and MM > 0.8, with modules of p < 0.05 suggesting 

statistical significance. The gene intersection within GS, MM, and key modules yielded EMT-related hub genes 

for further investigation. 

2.5. Gene selection using random and forest support vector machine  

To identify feature genes, two machine-learning techniques were used including random forest (RF) and support 

vector machine (SVM). RF refers to a learning algorithm integrating multiple decision trees[22]. In this 

analysis, the 'randomForest' and 'caret' packages were utilized to construct the RF model, followed by the 

calculation of feature importance scores using the RF classifier. The recursive Feature Elimination (RFE) 

algorithm applies a classifier to rank features and iteratively eliminates the least significant ones until the 

desired number of features is reached[23]. Using the RFE method, we determined the importance and ranking of 

each gene. SVM is a machine learning algorithm proposed by Vapnik and his colleagues deriving classification 

insights from a limited number of samples[24]. The 'e1071' package was employed to establish the SVM-RFE to 

identify genes with minimal cross-validation error. 

2.6. Nomogram model construction 

Based on the 'rms' package, a nomogram model was constructed using the candidate genes identified by two 

machine learning algorithms. The expression of candidate genes was visualized using the R packages 

'ComplexHeatmap', 'ggpubr', and 'ggplot2'. 

2.7. Validation of candidate genes 

ROC curves were constructed to evaluate effectiveness of candidate genes in combined dataset on disease 

diagnosis with 'pROC' package. The accuracy of these gene predictions was validated in the independent 

GSE188944 and GSE51039 datasets. Then, to measure accuracy and diagnostic capability, the area under the 

ROC curve (AUC) was employed. 

2.8. Functional and pathway enrichment analysis 

DAVID (https://david.ncifcrf.gov) offers a wide range of functional annotation tools for investigators to explore 

biological significance for a large gene repertoire[25]. This platform was used to perform functional enrichment 

analysis using Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. 

The GO terms were categorized into the following three classes: biological process (BP), molecular function 

(MF), and cellular component (CC). Subsequently, for the purpose of visualizing the GO/KEGG data, the 

'ggplot2' package in R software was adopted. A Benjamini-adjusted p-value of 0.05 was selected as the 
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threshold for determining significant GO terms. 

2.9. Construction of protein-protein interaction network 

The Search Tool for the Retrieval of Interacting Genes (STRING) database (Version 12.0, http://string-db.org/) 

was used to perform the PPI network analysis. Network visualization was conducted with Cytoscape (Version 

3.9.1)[26]. The CytoHubba plugin within Cytoscape was employed to determine protein node degrees and 

identify significant modules. Various topology methods including Maximal Clique Centrality (MCC)[27], Edge 

Percolated Component (EPC)[27], Density of Maximum Neighborhood Component (DMNC)[28], Maximum 

Neighborhood Component (MNC)[27, 28]and Closeness[27] were utilized. Hub genes were selected by the top 

ten nodes. 

2.10. Unsupervised clustering analysis  

Samples were classified into different subtypes by expression of candidate genes. R software 

'ConsensusClusterPlus'[29] was used for analyzing samples in experimental group and for determining 

clustering K value. The cumulative distribution function of K for different values was evaluated to acquire the 

most reliable clustering analysis results[30]. In addition, R software 'ConsensusClusterPlus' was also adopted for 

identifying molecular subtypes based on the expression level of candidate genes. Uniform Manifold 

Approximation and Projection (UMAP) was employed as an unsupervised dimension reduction technique[31]. 

Finally, the R software 'umap' was employed to identify BPD clusters. 

2.11. Cell culture and treatment  

Human alveolar basal epithelial cells (A549, Abiowell, AW-CCH011, China) were cultivated in Dulbecco’s 

modified Eagle medium (DMEM, Cytiva, SH30243.01, USA) including 10% fetal bovine serum (FBS, absin, 

abs983, China), at 37 °C with 5% carbon dioxide (CO2). The A549 cells were classified into control and 

hyperoxia-treated groups. Next, cells in the hyperoxia group were cultured with 85% O2 in the medium for 48 h. 

2.12. Real-time fluorescence quantitative PCR (RT-qPCR) 

TRIzol reagent (TIANGEN, DP424, China) was used to extract total RNA in cultivated A549 cells. 

Subsequently, total RNA was reverse transcribed into cDNA utilizing the HiScript Q RT SuperMix for qPCR 

(Vazyme, R122-01, China), in line with protocol of the manufacturer. Taq Pro Universal SYBR qPCR Master 

Mix (Vazyme, Q712-02, China) was adopted for quantitative real-time PCR analysis. Candidate gene mRNA 

levels were calculated through the 2-ΔΔCt method following normalization to β-Actin mRNA levels. Table 2 

lists the specific primers. 

 

 

http://string-db.org/)
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Table 2: Primers used in RT-qPCR 

Gene Feverse (5′–3′) Reverse (5′–3′) 

β-Actin AAACTGGAACGGTGAAGGTG AGAGAAGTGGGGTGGCTTTT 

FLOT2 TTGCTGACTCTAAGCGAGCC TCCACGGCAATCTGTTTCTTG 

AQP9 GAAGAGCAGCTTAGCGAAAGA ACAGCCACATCCAAGGACAAT 

SEMA4A TGGATGGGATGCTCTATTCTGG GCGGAGGAAGTTGTCGGTC 

 

2.13. Statistical analysis 

Statistical analysis was performed with R software 4.3.1 and GraphPad Prism 9.0.0 software. Comparisons 

between the two groups were performed by adopting the Wilcoxon test or Student’s t-test. P < 0.05 was thought 

to be of statistical significance. 

3. Results 

3.1. Identification of significant overlapping genes 

To enhance the comprehensibility of this study, the data processing workflow was depicted (Fig. 1). Since 

GSE108754 and GSE32472 were conducted on different platforms, with different samples and timeframes, we 

combined and standardized samples from both datasets using the 'sva' R package. This approach was aimed at 

increasing the sample size and mitigating batch effects. DEGs between BPD patients and healthy individuals 

were analyzed with the 'limma' package. The combined microarray datasets showed totally 891 DEGs, including 

481 substantially up-regulated and 410 significantly down-regulated genes in BPD relative to the control group. 

These findings were visually represented in a volcano plot (Fig. 2A) and heatmap (Supplementary Fig. 1). 

Furthermore, we retrieved EMT-related genes from GeneCards, causing 6960 EMT-associated genes. By 

applying a relevance score threshold of >1, a total of 3403 EMT-associated genes were detected. Ultimately, by 

intersecting the 891 DEGs with the 3403 EMT-associated genes, 213 overlapping genes were identified using 

VennDiagram (Fig. 2B). 
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Figure 1: Workflow for the whole study. 

 

Figure 2: Overlapping genes analysis. (A) Differential gene expressions of BPD are shown in a volcano plot. 

The X-axis represents logFC and the Y-axis represents -log (adj.P.Val). Blue: down-regulated expression genes; 

Red: up-regulated expression genes; Black: no significant change expression genes. (B)Venn diagram showed 

the overlapping results of BPD from GEO and GeneCards. A total of 213 EMT-related genes are defined as 

overlapping genes. 
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3.2. Evaluation on immune cell infiltration into BPD 

With the purpose of investigating the immunological microenvironment of BPD, the relative abundance of 22 

immune cell types was estimated using the CIBERSORT algorithm. Then, this study compared the infiltration 

of these immune cells between non-BPD and BPD samples. The results were visually represented through 

boxplots and bar charts. Figs. 3A and 3B show the proportions of immune cell infiltration in BPD samples and 

non-BPD samples. Our analysis indicated that BPD samples exhibited higher infiltration levels of T cells 

follicular helper, natural killer (NK) cells activated, M0 macrophages, M1 macrophages, resting Mast cells, 

activated Mast cells, and neutrophils compared with non-BPD samples. By contrast, the infiltration levels of T 

cells CD8, CD4 naive, CD4 memory resting, regulatory T cells (Tregs), resting NK cells, and activated 

Dendritic cells were lower in BPD samples. No statistically significant variations were observed in the 

infiltration levels of the remaining immune cell types between the two groups. These findings suggest a distinct 

immune microenvironment in BPD compared with non-BPD individuals. 
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Figure 3: Microenvironmental immune infiltration analysis. (A) bar graph of different types of immune cells in 

each sample. (B) Comparison of 22 immune cell subtypes between patients in BPD and controls. data are 

presented as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001, ****P<0.0001. 

3.3. Construction of the WGCNA network 

Through Weighted Gene Co-expression Network Analysis (WGCNA) technique, co-expression modules were 

built by analyzing 213 genes which were excluded during sample clustering (Supplementary Fig. 2). The 

process involved step-by-step network construction and module clustering. Based on a scale-free R
2
 value of 

0.71, a soft-thresholding power of fifteen was chosen (Fig. 4A). The network displayed low average connection 

and strong independence at this power rating (Fig. 4A), contributing to the use of β = 15 for hierarchical 
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clustering. Genes with similar expression patterns were grouped into modules using average link clustering (Fig. 

4B). By adopting the topological overlap matrix and hierarchical average linkage clustering, distinct gene 

modules were identified in both the normal and BPD groups, including turquoise, gray, blue, and red modules 

(Fig. 4C). Based on 119 genes and the highest positive correlation (r=0.4, p=4e-13) with EMT, module 

turquoise is a vital module for additional research. A significant correlation was observed between the module's 

eigengene-based connectivity (MM) and gene significance (GS) (cor=0.62, p=5.5e-14) (Fig. 4D). With 

thresholds of GS > 0.3 and MM > 0.8, 70 and 38 key genes were identified in the turquoise module, 

respectively. The intersection of genes across modules, GS, and MM revealed 33 hub genes for subsequent 

analysis. 

 

Figure 4: Co-expression network construction and gene module identification. (A) Scale independence and 

mean connectivity analysis for various soft threshold powers. (B) Clustering dendrograms of genes. The 

different colors below indicate different co-expression modules. (C) Module–trait relationship. Each row 

represents a module eigengene and each column represents a trait. Each cell includes the corresponding 

correlation and p-value. (D) Correlation between gene signatures for BPD and module membership in the 

turquoise module. 

3.4. Identification of feature genes by machine learning algorithms 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2025) Volume 77, No  1, pp 141-169 

151 
 

R software was utilized for machine learning analysis on 33 hub genes, which led to the RF algorithm’s 

discovery of 28 feature genes. The random forest model was optimized with 500 trees, with the minimum error 

achieving at 74 trees (Fig. 5A). Subsequent evaluation determined the optimal number of trees to be 28 (Fig. 

5B). Visualization of feature gene importance was performed using the 'ggplot' package, revealing the top five 

genes as REPS2, ALOX5, BCL6, SLC2A3, and SVIL (Fig. 5C). In addition, 20 feature genes were identified 

through the SVM-RFE algorithm, with the final optimal set determined to be 20 genes (Fig. 5D). Combining the 

results of both algorithms yielded totally seventeen feature genes, including ALOX5, BCL6, SVIL, FLOT2, 

PRKCD, MMP9, MAPK14, ABHD5, PPP4R1, CD63, CEACAM3, ANXA3, ARG1, AQP9, CXCR1, 

SEMA4A, and C5AR1(Fig. 5E). 

 

Figure 5: Screening for feature genes. (A) The influence of the number of decision trees on the error rate. The 

x-axis represents the number of decision trees, and the y-axis indicates the error rate. (B) Biomarker signature 

gene expression validation by support vector machine recursive feature elimination (RF–RFE) algorithm 

selection. (C) The top 5 relatively important genes were selected. (D) A plot of gene selection via SVM-RFE 

algorithm. (E) Two algorithmic Venn diagram screening genes. 

3.5. Construction and Evaluation of a Nomogram  

After removing the genes that had previously been investigated, 10 potential genes were chosen by a 
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combination of machine learning and literature review screening. Then, a nomogram model for BPD risk 

prognosis was then developed utilizing the 'rms' package. As depicted in Fig. 6A, the top three risk factors 

identified in the model were CXCR1, FLOT2, and AQP9. Subsequently, boxplots and heatmaps were generated 

using the 'ggpubr' and 'ComplexHeatmap' packages, revealing that all 10 genes were upregulated in BPD 

samples and statistically significant (P < 0.0001) (Figs. 6B and C). Further analysis focused on the genes 

CXCR1, FLOT2, AQP9, BCL6, PPP4R1, and SEMA4A for future studies. 

 

Figure 6: Construction of Nomogram. (A) The nomogram was constructed based on the training cohort. (B-C) 

Expression of candidate genes in BPD samples. 

3.6. ROC Curve Analysis of Candidate Genes 

In this study, ROC curve analysis was conducted and visualized using the 'ggplot2' package to enhance the 

diagnostic potential of candidate genes. In the combined dataset, all six diagnostic genes exhibited AUC values 

above 0.6 (Fig. 7A). The results of the validation process using the GSE188944 datasets showed that the AUC 

values of FLOT2, SEMA4A, CXCR1, and AQP9 were 0.755, 0.775, 0.676, and 0.686, respectively (Fig. 7B), 

while the values of BCL6 and PPP4R1 were 0.588 and 0.48, respectively (Supplementary Fig. 3). Besides, ROC 

curves were produced for genes in the GSE51039 validation dataset whose AUC values were greater than 0.7 

(Supplementary Fig. 4). These findings indicate promising diagnostic capabilities for FLOT2, AQP9, SEMA4A, 
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and CXCR1 as potential biomarkers for BPD, requiring further validation in future investigations. 

 

Figure 7: Analysis of the disease-predicting abilities of candidate genes. (A) ROC curve analysis of candidate 

genes in the merged dataset. (B) ROC curve analysis of hub genes in the verification dataset GSE188944. 

3.7. GO and KEGG Analyses on Hub Genes  

Utilizing DAVID database, all 33 hub genes were analyzed to identify the GO and KEGG pathways. Next, the 
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top ten highly ranked genes were then visualized by “ggplot” package in R. Based on enrichment analyses of the 

33 hub genes, the top three biological processes (BPs) terms included chemotaxis, response to an organic 

substance, and defense response to a bacterium (Fig. 8A). Within the cellular component (CC) groups, the hub 

genes were predominantly associated with plasma membrane, extracellular region, and extracellular exosome 

(Supplementary Fig. 5A). Furthermore, calcium ion binding, protein binding, and calcium-dependent protein 

binding were shown to be the main molecular functions (MFs) associated with BPD (Supplementary Fig. 5B). 

The KEGG pathway analysis indicated significant enrichment of the 33 hub genes in Neutrophil extracellular 

trap formation, Proteoglycans in cancer, and IL-17 signaling pathways (Fig. 8B). 

 

Figure 8: GO and KEGG pathway enrichment analyses were performed on 33 hub genes in BPD. (A) GO 

biological process (BP)enrichment results. (B) KEGG pathway enrichment results. 
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3.8. PPI network  

To examine the interactions among hub genes, the STRING database was used for creating PPI networks, which 

were then visualized with Cytoscape software. Fig. 9A illustrates a PPI network with 33 nodes and 76 edges 

representing hub genes. Afterwards, the data was analyzed using the CytoHubba plugin, assessing the degree of 

association between hub genes using five distinct calculation methods: EPC, MCC, DMNC, MNC, and 

Closeness (Fig. 9B-F and Table 3). 

 

Figure 9: PPI network and interaction analysis of hub genes between the BPD and the nonBPD group.(A)PPI 

network of common hub genes with 33 nodes and 76 edges which was generated by Cytoscape. (B–F) The hub 

genes were identified using five topological analysis methods (B) EPC, (C) MCC, (D) DMNC, (E) MNC, and 

(F)Closeness with cytoHubba. As shown, the node color represented the score, with deeper and redder nodes 

meaning higher scores. 
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Table 3: The 5 methods of topology analysis in CytoHubba for the hub genes in BPD 

Method EPC MCC DMNC MNC Closeness 

 MMP9 FPR2 ALOX5 MMP9 MMP9 

 CXCR1 MMP9 AQP9 FPR2 FPR2 

 FPR2 C5AR1 FPR2 C5AR1 CXCR1 

 C5AR1 CXCR1 C5AR1 CXCR1 CD63 

Gene AQP9 ALOX5 MMP9 ALOX5 C5AR1 

 ALOX5 AQP9 CXCR1 AQP9 ALOX5 

 S100A8 CD63 CD63 CD63 S100A8 

 CD63 S100A8 ARG1 ARG1 MAPK14 

 ARG1 MAPK14 TIMP2 TIMP2 TIMP2 

 TIMP2 CEACAM CEACAM3 CEACAM3 AQP9 

 

3.9. Classification of candidate genes into two subtypes by unsupervised clustering 

Based on the candidate genes selected above, we utilized the 'ConsensusClusterPlus' method for analyzing BPD 

sample subtypes. In addition, the consistency matrix heat map demonstrated that the samples could be clearly 

divided into two different classes based on the results (Fig. 10A). Two clusters were identified in a non-linear 

UMAP space (Fig. 10B). 

 

Figure 10: The expression of candidate genes was divided by unsupervised clustering analysis into two subtype 

samples. (A) Heat map of clusters when consensus K= 2. (B) Data clusters in UMAP spaces. 

3.10. Validation of the expression of candidate genes in A549 cells 
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After 48 hours of hyperoxia treatment, N-Cadherin and α-SMA mRNA levels were upregulated in A549 cells, 

as shown by RT-qPCR experiments, suggesting hyperoxia-induced EMT (Fig. 11A). Subsequently, the 

expression patterns of four candidate genes were examined. Fig. 11B illustrates the upregulation of FLOT2, 

AQP9, and SEMA4A mRNA in hyperoxia-treated A549 cells. However, CXCR1 primers produced ambiguous 

results with multiple peaks, which could prevent verification of the data. 

 

Figure 11: Validation of EMT markers and their candidate genes in A549 cells. (A) N-Cadherin and α-SMA 

mRNA levels in hyperoxia-treated A549 cells. (B) Candidate genes (FLOT2, AQP9, SEMA4A) mRNA levels 

in hyperoxia-treated A549 cells. *p<0.05, **p<0.01, ***p<0.001, ****p<0.001. 

4. Discussion 

BPD has emerged as a prominent pulmonary disease among premature infants, with significant potential for risk 

assessment and prevention in its treatment[32]. Baraldi and his colleagues emphasized the correlation between 

BPD development and adrenocortical insufficiency[33]. With Bioinformatics technology, five disease signature 

genes have been recognized as potential targets for the identification and treatment of BPD[30]. Despite this 

progress, limited research has investigated the effect of EMT on BPD. Therefore, this study aimed to investigate 

diagnostic biomarkers within the EMT for BPD. The focus on EMT is crucial considering its role as a key 

mechanism in disease regulation. According to earlier studies, EMT exerts a vital role in controlling the growth 

of cancer and predicting a patient’s susceptibility to chemotherapy medications[34-36]. Targeting EMT could 
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potentially provide an effective treatment strategy for a variety of diseases. EMT of lung epithelial cells is 

associated with BPD pathogenesis, implying its importance in interfering with alveolar development and lung 

injury repair[9, 37]. Therefore, it is imperative to identify reliable biomarkers to establish the relationship 

between EMT and BPD. Our preliminary exploration into EMT-related diagnostic biomarkers has identified 

four potential candidates, exhibiting promising diagnostic value. 

Flotillins (FLOTs) are a group of membrane-associated proteins that are part of the larger family of proteins 

with the stomatin-prohibitin-flotillin-HflK/C (SPFH) domain[38]. Among these proteins, FLOT2 is vital for 

some biological processes, including apoptosis, actin rearrangement, cell adhesion and migration, and signal 

transduction[39, 40]. Its increased expression is connected with tumor development and metastasis within 

several cancers, which included breast cancer, nasopharyngeal carcinoma, renal cancer, gastric cancer, and 

malignant melanoma[41]. According to studies, FLOT2 inhibits apoptosis and activates certain oncogenic 

signaling pathways to enhance cell invasion and growth[42]. Furthermore, studies have demonstrated that AEC 

II cells are capable of transdifferentiating into mesenchymal cells through EMT, which is connected to illnesses 

like pulmonary fibrosis and brought on by triggers including hypoxia and hyperoxia[37]. Moreover, the 

molecular and metabolic processes of BPD and its evolution are significantly influenced by programmed cell 

death (PCD) mechanisms like necrosis, apoptosis, ferroptosis, and autophagy[43]. The paper 'Flotillin-2 

Modulates Fas-Signaling Mediated Apoptosis following Hyperoxia in Lung Epithelial Cells' [44] increases the 

possibility of a connection between FLOT2 and BPD, highlighting the protein’s possible role in BPD diagnosis. 

Transmembrane mosaic proteins called aquaporins (AQPs) are extensively dispersed on membranes of cells or 

organelles in a variety of organs and tissues[45]. Aquaporin 9 (AQP9) is a member of AQP family, serves as the 

water-selective membrane channel, and exerts a role in cell migration, tumor growth, angiogenesis, immune 

response, and bactericidal activity[46]. AQP9 expression can be detected in tumor cells and immune cells 

including neutrophils, macrophages, and T cells[47, 48]. Neutrophils makes a vital impact on the lungs of BPD 

and are associated with symptom severity[49]. Immune infiltration analysis revealed high expression of 

neutrophils in BPD, conforming to previous studies. Increased AQP9 expression in BPD suggests potential 

clinical diagnostic significance. 

Semaphorins are a class of proteins that were first discovered in the neurological system as axon guidance 

factors. They have been associated with the development of the heart, kidney, and immune system, among other 

organs[50]. Semaphorin 4A (SEMA4A) is a protein of 761 amino acids related to several physiopathological 

processes including cancer, immunological response, and angiogenesis[51, 52]. It has been indicated that 

SEMA4A controls stromal cell IL-10 production. In concert with IL-10, SEMA4A induces the EMT, facilitating 

tumor cell invasion[53]. In addition, SEMA4A is essential for T cell activation and differentiation as well as for 

the control of the Th1/Th2 immune response[54]. In the context of BPD, a condition characterized by various 

lung abnormalities, SEMA4A may also be implicated, consistent with previous research findings. 

The CXCR1 chemokine receptor, as a seven-transmembrane G-coupled protein receptor involved in 

inflammatory signaling, recruits and activates leukocytes by binding two ligands, CXCL6 and CXCL8[55]. 

Numerous cells, including fibroblasts, neutrophils, or vascular endothelial cells, express this receptor[56]. 
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CXCR1 stimulates gastric cancer growth, invasion, migration, and metastasis both in vitro and in vivo[57]. In 

cases of androgen-independent prostate cancer, depletion of CXCR1 has been shown to decrease angiogenic 

capacity and tumor growth[58]. Moreover, it has been found that breast cancer stem cells may target 

CXCR1[59]. Many cellular responses, including cytoskeleton reorganization, morphological alterations, 

migration, integrin production, reactive oxygen species (ROS) generation, and phagocytosis, are triggered by 

the activation of CXCR1[60]. This receptor contributes to angiogenesis by playing a vital function in cell 

migration[61]. Furthermore, data indicate that several cardiovascular diseases (CVDs), like ischemic disorders, 

atherosclerosis, cardiac remodeling, and hypertension, may be correlated with CXCR1 receptors[61]. Through 

increasing the synthesis of reduced glutathione (GSH), CXCR1 knockout preserves endothelial cells’ redox 

equilibrium. It lowers lung neutrophil influx and ROS release, which contributes to mitigating hyperoxia-

induced acute lung injury (ALI)[62]. Therefore, CXCR1 holds clinical significance in the diagnosis of BPD. 

Recent data suggests the vital impact of immune response on BPD pathology[49]. Macrophage levels are 

significantly higher in BPD patients[63]. T lymphocytes exert an essential role in chronic lung disease 

occurrence and development among prematurely born infants[64]. CD8+ T cells are widely suggested to 

facilitate BPD immunopathology while increasing the respiratory morbidity risk[65]. A neutrophil count is the 

risk factor associated with new BPD occurrence among newborns[66]. From the analysis of 213 overlap genes 

using the CIBERSORT approach, differences in various immune cells, including NK cells activated, T cells 

follicular helper, M0 macrophage cells, M1 macrophage cells, neutrophils, activated mast cells, and resting mast 

cells, were discovered in control compared with BPD samples. These results indicate the potential involvement 

of immune cells in the pathogenesis of BPD. However, this study still has the certain limitations. The small 

sample size necessitates a large cohort for validating and strengthening the results. In addition, the analysis is 

less accurate and thorough because there are no in vivo or further in vitro investigations to confirm gene 

expression levels. Further validations should be carried out to enhance our result credibility. 

5. Conclusion 

To conclude, FLOT2, AQP9, SEMA4A, and CXCR1 are identified as potential biomarkers for BPD. In 

addition, we have created a nomogram model and ROC based on EMT-related biomarkers to predict BPD. It is 

necessary to perform further research on the functions and regulatory mechanisms of key genes in BPD. The 

results shed more light on BPD mechanisms and their treatment from an EMT perspective. 
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Appendix 

 

Supplementary Figure 1: Differential expressed genes analysis. Heatmap displaying different expressions of 

the DEGs. Red indicates a higher expression and blue represents a lower expression. 
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Supplementary Figure 2: Co-expression network construction and gene module identification. clustering 

dendrogram of 305 samples. 
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Supplementary Figure 3: Analysis of the disease-predicting abilities of candidate genes. ROC curve analysis 

of hub genes in the verification dataset 188944. 
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Supplementary Figure 4: Analysis of the disease-predicting abilities of candidate genes. ROC curve analysis 

of hub genes in the verification dataset GSE51039. 
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Supplementary Figure 5: GO and KEGG pathway enrichment analyses were performed on 33 hub genes in 

BPD. (A) GO cellular component (CC) enrichment results. (B) GO molecular function (MF) enrichment results. 


