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Abstract 

 This study, A Systematic Review of Deep Learning Methods: Classification, Selection, and Scientific Understanding, 

categorizes central deep learning (DL) models—including Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs), Generative Adversarial Networks (GANs), and Autoencoders (AEs)—based on their suitability for 

specific tasks and data types. While DL has achieved significant success in image recognition, language processing, and 

anomaly detection, several critical limitations pertain to interpretability, robustness, and scalability. This review summarizes 

the strengths and weaknesses of each model in a structured manner to guide the choice among DL models. Findings 

emphasize that theory must be advanced to improve transparency and reliability to better support practitioners and 

researchers in making informed choices for DL's responsible deployment across sectors. 
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1. Introduction 

Deep learning, a specialized branch of machine learning, has driven innovation onto the fast track in everything from image 

recognition and language processing to predictive analytics. Equipped with the ability to process enormous amounts of data 

and self-learn complex patterns, deep learning has brought about industrial transformation by using systems to carry out tasks 

such as disease diagnosis and self-driving cars. Despite its excellent capabilities, DL remains unfathomably hard to understand. 

While high-dimensional data processing in DL models supports their performance of specific tasks, the inner mechanisms are 

usually opaque. It is still an issue to tell why a particular outcome occurs when a given input is applied and what the limitation 

of their computation is for some DL models; they are also prone to errors when data is slightly perturbed [1, 2]. Because such 

work does not have theoretical grounds, this, in turn, limits DL's applicability in high-stakes fields where robust, interpretable, 

and reliable performance is critical [3]. The current study overcomes these challenges by systematically reviewing the DL 

methods' strengths and limitations, including their suitability for various tasks and data types. 

The review classifies DL models from Convolutional Neural Networks to Generative Adversarial Networks use cases and 

technical requirements, providing an all-encompassing framework that guides model selection. Conclusively, it gives the 

theoretical gaps in DL and suggests ways to improve interpretability and robustness.The review explores three main questions: 

(1) What are the strengths, limitations, and appropriate applications for current deep learning (DL) algorithms? (2) How can 

DL methods be systematically classified to improve model selection for specific tasks and data types? Moreover, (3) What are 

the theoretical challenges in DL, especially concerning interpretability and robustness?  

2. Literature Review 

2.1. Overview of Deep Learning and Machine Learning 

Deep learning is thus a narrow segment of machine learning, focusing on large volumes of data processing, often with 

unstructured information represented by images, audio, and text [3]. Contrasting with the traditional models of machine 

learning, which require explicit feature extraction from experts, these deep learning models learn features through multiple 

layers of their networks. Thus, they can become more expressive in pattern recognition. This autonomy of feature learning in 

DL greatly benefits the processing of complicated data types in applications such as image recognition, natural language 

processing, and autonomous systems. While ML typically performs well on structured data problems and provides more 

interpretability, DL offers higher accuracy and efficiency in unstructured data, albeit at the cost of being less interpretable [4]. 

Machine learning depends on explicit feature extraction by humans to extract insights from data. Most of the models are 

designed for performing either supervised or unsupervised learning. ML models, including decision trees and support vector 

machines, work well on structured datasets and present precise, traceable results [4]. On the other hand, DL architecture 

consists of multi-layer neural networks operating on supervised and unsupervised data with algorithms to extract very subtle 

patterns with no human input. With the potential for analysis of nonlinear data patterns with DL, there has been an expanded 

use of CNNs and RNNs in various fields. For instance, CNNs process image data through spatial dimensions, while RNNs 

process sequences in time series and text data [5]. 

2.2. Historical Development of DL Models 

The history of DL can be traced back to the 1950s, with basic models such as the Perceptron, proposed by Frank Rosenblatt, 

explicitly developed to classify linearly separable data points. The latter improvement on the Perceptron through 

Backpropagation, created during the 1960s, allowed error-based training across multi-layered networks, a critical 
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development necessary in deeper architectures. This presented the premise for deeper DL architectures that solve nonlinear 

problems [6]. 

With the development of DL, major models came forward, such as AE, which was discovered during the 1980s for data 

dimensionality reduction by keeping only the essential features, and CNNs, which were introduced by Yann LeCun back in 

1989 and specialize in recognizing images through their space hierarchies. Since then, CNNs have been at the core of various 

applications, such as medical imaging and autonomous driving, due to their rigidity in image classification tasks [6]. The 

1990s finally witnessed the evolution of RNNs, which are considered very good at sequence-based tasks; hence, their value in 

speech recognition and language translation [6]. More recent developments include GANs, introduced in 2014 by Ian 

Goodfellow, which are comprised of two neural network generators and operate in opposition to generating realistic data 

samples [6]. Applications of GANs range from image synthesis to natural language processing and even extend to healthcare, 

generating synthetic medical images for research purposes. 

These models represent the movement of DL from simple binary classifiers to sophisticated architectures able to manipulate 

complex, high-dimensional data. On the other hand, this fast advance within DL has also underlined the critical limits of the 

scientific knowledge about these models on aspects like interpretability, robustness, and computational bounds [1, 2] 

2.3. Core Issues in DL Understanding 

Notwithstanding the successes of DL, massive gaps remain in basic theoretical understanding regarding model behavior, 

robustness, and interpretability. Perhaps the most limiting is that they are considered "black-box" models since the processes 

driving predictions are incompletely understood. Researchers further point out the inability of the field to explain why some 

models produce a particular output and how to predict the behavior that models will exhibit on unseen datasets [1, 2]. For 

example, though DL models work well on big datasets, they become brittle once applied to data with slight perturbations or 

changes in the data distribution. 

Another point of incompleteness in understanding DL relates to how these models respond to new input data distributions. In 

particular, while DL models are pre-trained on specific distributions, they may not generalize well when unseen data are 

given [7]. This has been an essential issue in applications concerned with autonomous driving or medical diagnosis, wherein 

such an uninformative input might result in unsafe or incorrect outcomes. Besides, there is also a shortage of approaches for 

quantifying uncertainty in the predictions of DL, whereas one can measure the confidence intervals using probabilistic ML 

models. The inability to determine the reliability of DL outputs constrains its utility in high-stakes decision-making  [4] 

Apart from that, the computational bounds of DL models are not particularly well known. For example, Thompson and his 

colleagues. raise the question of whether adding more data and increasing computational power result in perpetual 

improvement in the performance of DL models or whether there is a saturation point at which further addition of these 

resources does not improve the model anymore [3]. These omissions must be addressed theoretically to enhance safety and 

reliability when applying DL across industries. Other domains, such as random forests of ML by Biau & Scornet 2015 and 

high-dimensional sparse statistics, also contain similar gaps between practical performance and theoretical interpretation, thus 

restating the challenge at large in the machine learning disciplines [8]. 

2.4. Applications and Limitations in Practice 

Applications range from healthcare and manufacturing to financial and natural language processing. However, the field faces 

a bottleneck of theoretical grounds, hence not being scalable and reliable over a wide range of domains. As expected, CNNs 
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have become very accurate for medical imaging, especially in radiology and pathology, where the extraction of patterns 

enables early disease detection [9]. This is because CNNs are good at recognizing spatial features and thus work well where 

image-based applications are concerned. Similarly, most applications of RNN exist for tasks regarding sequence modeling, 

such as language translation and time series forecasting, where the maintenance of the sequential dependencies is crucial if 

the accuracy is high [6].  

It is used in manufacturing to identify product defects and improve quality control. The model fragility problem typically 

plagues this application: models developed on particular production conditions misclassify defects when there are slight 

variations [8]. It also plays a significant role in finance for stock price predictions or fraud detection; however, the well-

known vulnerability of DL to adversarial inputs is small data perturbations yielding drastic changes in outputs, which 

threatens its reliability. Particularly dubious are high-stakes applications where predictions must remain trustworthy and 

resilient against general manipulation. 

The incorporation of DL models such as GANs and CNNs that generate refinements of building models, for example, in 

architectural design, helps an architect see the model of a building design [9]. This could also enhance energy efficiency. 

Models might be good at high-dimensional spatial data but are limited in providing transparency for extensive modifications 

in design due to a lack of interpretability. The black-box nature of the models faces challenges in many fields where decision-

making has to be transparent, especially in fields involving public safety. For instance, CNNs have shown tremendous 

promise in designing structures with optimized layouts and durability; however, due to low interpretability, translating these 

into valuable insights remains challenging [9] 

These limitations in scientific understanding at DL imply practical consequences for its scalability. For instance, a 

considerable quantity of labeled data must be used to train deep learning models, which is prohibitively expensive and time-

consuming to collect, such as in medical diagnostics. The heavy computational requirements for DL necessitate specialized 

hardware such as GPUs; this makes DL inaccessible in specific settings and significantly smaller organizations. Bound by 

these factors, DL finds its application, especially in resource-constrained environments, while high energy consumption for 

training large-scale models raises environmental concerns. 

3.Methodology 

The primary research questions guiding this review are: (1) What are the strengths, limitations, and appropriate applications for 

current deep learning (DL) algorithms? (2) How can DL methods be systematically classified to improve model selection for 

specific tasks and data types? Moreover, (3) What are the theoretical challenges in DL, especially concerning interpretability 

and robustness? 

A systematic review approach was followed to answer these questions, and data collection and synthesis were done according 

to a well-structured protocol. A structured search will be conducted across major academic databases like Scopus and IEEE 

Xplore for studies published between 2012 and 2024 since the research area is fast-moving. The search terms covered the 

primary DL methods, application areas, and challenges determined a priori to cover relevant research. 

The screening criteria included English, peer-reviewed articles, conference papers, and proceedings. Title, abstract, and 

keywords are screened only to select studies that precisely address the applications, strengths, and limitations of DL. The initial 

screening ensured that only pertinent and high-quality sources would inform the review synthesis. 

This systematic approach provided a sound basis for the analysis of the various methods of DL from both the theoretical and 
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applied standpoints. Afterward, the chosen studies were synthesized to create a taxonomy of the methods of DL that could give 

a better framework for understanding and selecting models based on the task at hand and data types. These recommendations 

were developed through such an analysis. They should guide practitioners and researchers in effective model selection among 

DL models, indicating practical applications while underpinning areas where further research is required concerning DL 

interpretability and robustness. 

4. Overview of the Results  

The systematic review recognized the significant techniques in DL, including CNN, RNN, AE, and GAN, among others, and 

logically framed them based on the suitability and strengths of each in target applications. CNN could manipulate images and 

spatial data; RNN was ideal for sequential data, such as natural language processing and time series analysis applications. The 

most suitable applications for AEs included unsupervised learning tasks like data compression and anomaly detection. In 

contrast, GANs helped generate synthetic data and handle complicated picture-generation activities. 

It also provides a taxonomy that guides the selection of models based on task type, characteristics of data, and model 

robustness requirements. Key findings of the work emphasized vital challenges, especially in model interpretability and the 

capability for generalization under changing conditions, thus probing future research in dealing with the theoretical gaps of DL. 

Hence, the review extends support to a more fine-tuned approach toward DL method selection that guides practitioners and 

shows areas where increased interpretability and robustness might enhance the reliability and performance of the models. 

Table 1: Summary of the Results 

Research Question Findings 

Strengths, Limitations, and 

Applications of DL Algorithms 

DL methods excel in tasks like image recognition, language processing, and data generation 

but suffer from limitations in interpretability and robustness. Sensitive to data variations, 

DL models may underperform in high-stakes settings requiring reliability. 

Classification and Taxonomy of 

DL Models 

DL models were categorized by task and data type:  

- CNNs for image processing and object detection  

- RNNs for sequential data (e.g., language, time series)  

- GANs for data generation  

- AEs for anomaly detection. 

Theoretical Challenges in DL: 

Interpretability and Robustness 

DL’s "black-box" nature limits transparency, making it difficult to justify or validate model 

decisions in critical fields. Unpredictability under data shifts and the high computational 

demands of DL models remain pressing concerns. 

Recommendations for 

Practitioners and Researchers 

Model selection should consider both task requirements and data type. Future research 

should focus on advancing DL interpretability and developing robust, less resource-

intensive DL architectures to expand safe deployment across industries. 

5.Discussion 

This systematic review presents a clear taxonomy of the DL methods, categorizing them by best task suitability, data type, 

strengths, and limitations. While this taxonomy gives practical advice for choosing the DL algorithm for a given problem, it 

also points out several open issues regarding theoretical and practical challenges within the field. While DL has attained 

arresting milestones across domains, including image processing, natural language processing, and predictive analytics, 

profound gaps persist in our comprehension of model interpretability, robustness, and scalability, limiting the widespread 
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applicability of DL. This discussion gives a comprehensive view of these themes and how each DL method fits into its 

application context. Hence, it is confronted by persistent challenges that restrict DL's potential. 

5.1. DL Method Suitability and Task-Specific Advantages 

The review pointed out that CNNs work exceptionally well in activities involving data with spatial information, such as image 

processing and object detection [7, 8, 9, 10]. In CNNs, the architecture is usually multilayered, comprising convolutional and 

pooling layers that extract features from the image data; hence, CNNs are ideal for applications that involve hierarchies of 

spatial entity recognition. These works have established the efficacy of CNNs in applications ranging from disease detection 

using medical imaging to autonomous driving, where a CNN endows a vehicle capable of recognizing road signs and obstacles 

Reference [7]. Although CNNs have achieved high accuracy in these applications, interpretability remains limited; while 

models can perform well, understanding the feature hierarchies that drive their decisions is difficult. 

Recurrent Neural Networks have, till now, shown strengths in handling sequential data and are ideal for tasks such as time 

series analysis, natural language processing, and speech recognition [1]. Strong points of RNNs lie in the capturing of 

dependencies within a sequence. However, they are prone to limitations such as vanishing gradients that reduce their 

effectiveness in handling long-term dependencies. Other works have leveraged Long Short-Term Memory and GRU to 

mitigate such issues; these have their retrieved information over longer sequences and are applicable in areas such as machine 

translation and predictive analytics in finance [2]. However, as these networks improved on this weakness, there is still a 

problem in real-time uses of RNNs where computational efficiency and stability are paramount. 

Autoencoders first appeared for anomaly detection, dimensionality reduction, and noise reduction tasks. The general 

philosophy of AEs is to compress the input data into a latent space and attempt to reconstruct it [8]. It finds its applications in 

identifying outliers or significant features within unstructured data. Applications range from cybersecurity, which helps detect 

anomalous patterns, to medical imaging, which reduces noise in diagnostic images [11]. However, AEs are challenged to 

decide the optimal dimensionality of the latent space, which usually affects the accuracy and reliability of data reconstruction. 

The second limitation of AEs is that large datasets are required, which constrains application in environments with constrained 

data [12].The generative adversarial network comprises a generator and a discriminator network, which have proved very 

helpful in generating synthetic data, considering that their significant applications are found in image synthesis and realistic 

data generation [13, 14]. GANs have become valuable tools in fields such as fashion and gaming for generating novel images 

and healthcare and creating synthetic medical images for research and training. Although GANs are notoriously difficult to 

train, the balance between generator and discriminator networks must be outstanding to get high-quality results [7]. Eventually, 

the training instability and high computational needs associated with GANs reduce their usability on broader applications. 

5.2. Challenges in Interpretability and Robustness 

While deep learning methods have had remarkable successes, their black-box nature creates ongoing challenges, especially in 

high-stakes applications where model interpretability is central. Understanding interpretability means not only what the model 

predicts but also why it made such predictions [6]. Unlike in more traditional ML models, in which decision boundaries and 

feature importance can often be traced out, the nature of deep learning operates over many complex layers of transformation 

that are inherently hard to see into [5]. While CNNs and GANs perform excellently in image-related applications, for instance, 

their low interpretability constrains their adoption in healthcare, where the rationale behind model decisions must be 

understandable for clinical validation purposes. 
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Figure 1: Comparison of Performance of Different DL methods 

here are also interpretability implications for model robustness. Since it is difficult to understand how models process the data 

and make their predictions, there is limited confidence in the DL systems, especially when such models are confronted with 

novel or slightly different inputs [5]. For example, deep learning research has found evidence that such models are sensitive to 

changes in the data distribution due to noisiness, perturbations, or data pattern shifts. In one study, slight changes in input 

images resulted in the misclassification of objects by CNNs; these findings have tended to explain the fragility of DL models 

even when minor changes present themselves. This is a worrying sensitivity for critical applications that require autonomous 

vehicles and medical diagnostics to have reliable model performance for safety and efficacy. 

Another point is that the methods of quantifying uncertainty within the predictions are missing in DL models [5, 6]. Whereas 

probabilistic models can estimate confidence in a prediction using probability distributions, most deep-learning models yield 

deterministic outputs without indicating the reliability of their decisions. This also presents difficulties in assessing when a 

model may fail in applications where knowing this fact will be beneficial. For example, predicting a degree of uncertainty in 

forecasting the stock market or climate modeling could help make better decisions. 

5.3. Practical Constraints in DL Scalability and Data Requirements 

Most DL models require a lot of computational resources and large datasets to be trained appropriately; this usually brings in a 

scaling inhibitor. For example, CNNs and GANs usually require large datasets to generalize well. They become challenging to 

implement in scarce data domains [4]. Other models can still work with considerably smaller datasets, such as AEs, but their 

performance will suffer poorly without adequate data variety and quantity. Demand for labeled data in supervised learning also 

brings some practical and ethical issues, for example, in healthcare, where data labeling can be extremely time-consuming and 

costly [8]. A certain offsetting of this burden of data has been done by developing semi-supervised and unsupervised methods. 

However, these are still very early and require further research. 

The scalability is also further complicated by the computational cost associated with DL. Most deep learning models require a 

GPU during training and inference, making them unreachable for small institutions or resource-constrained environments [9]. 

All these demands for special hardware bring about financial and environmental implications, as energy-intensive processes 

contribute to the overall carbon footprint. In response, model optimization techniques like pruning and quantization have been 

investigated to reduce computational demands; however, these usually come at the cost of model accuracy and, therefore, need 

further trade-offs [4]. 

5.4. Theoretical Gaps and Future Research Directions 

Besides the practical difficulties, this review has indicated serious theoretical gaps that impede DL improvement. Studies 

describe some of the scientific open issues concerning the explainability of the behavior of DL models and provide essentially 
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mathematical properties of NNs [1, 2]. Most ML models based on DLs include several matrix transformations whose 

interactions are far from interpretable, explaining why certain weights have been learned or how these weights relate to final 

predictions. This lack of theoretical clarity imposes a severe barrier to model validation in that the developers and users cannot 

find insights on how to verify the performance of DL against different data inputs. 

A study investigated whether adding more data or more computation could continue to improve DL models forever or whether, 

at some point, diminishing returns would kick in and make improvements questionable [3]. These computational limits are 

essential to consider and are vital for informing the scalability of DL technologies in the future. Besides, other ML techniques, 

such as random forests and high-dimensional sparse statistics, face similar lapses in theoretical explanation [3, 6, 7, 8]. More 

significant problems may exist in machine learning areas where empirical results outpace scientific understanding. 

These gaps need more research to improve the interpretability of DL and develop metrics for estimating model uncertainty and 

robustness. Techniques such as XAI aim to enhance the transparency of DL models by attributing the features that contribute 

most toward specific predictions. Methods such as SHAP and LIME are being explored to provide localized explanations for 

model decisions. Most existing techniques remain narrow in scope and hardly scalable to handle such complexity from DL 

models, especially for those applications demanding high accuracy and reliability. 

6.Conclusion 

This systematic review examined the strengths, limitations, and applications of critical deep learning (DL) methods, aiming to 

provide a structured framework for model selection and to address gaps in DL’s theoretical understanding. By categorizing DL 

methods such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Autoencoders (AEs), and 

Generative Adversarial Networks (GANs), this study highlighted each model’s specific advantages for tasks involving image 

processing, sequential data, anomaly detection, and data generation. This taxonomy aids in selecting appropriate DL models 

based on task type and data characteristics, offering practical guidance to researchers and practitioners alike. 

Results have underlined that, despite DL's enormous successes across many tasks and industries, there is a clear need to 

investigate further the interpretability, robustness, and scalability of deep models. Due to the black-box nature of DL, this 

severely limits its usability in critical applications, in particular those for which transparency in decision-making is necessary. 

Besides that, DL models have become sensitive even to minor variations in data and rely heavily on massive datasets, which 

may be risky in dynamic or data-poor environments. A better solution to these issues is needed with the help of better 

theoretical frameworks and methods for interpretability so that DL becomes more reliable and accessible. 
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