

International Journal of Sciences:

Basic and Applied Research

(IJSBAR)

ISSN 2307-4531
(Print & Online)

https://gssrr.org/index.php/JournalOfBasicAndApplied/index

154

Exploring Shor's Algorithm in Cracking RSA Encryption

Aashutosh Srivastava*

Student Delhi Public School, Navi Mumbai, Maharashtra, India

Email:aashutoshsr27@gmail.com

Abstract

The present study explores the groundbreaking possibilities of Shor's algorithm in cracking RSA encryption,

hence enhancing the security consequences of this extensively employed cryptographic protocol. Due to Shor's

algorithm's exponential speed advantage over classical algorithms, RSA encryption—a popular public key

cryptosystem—is vulnerable to quantum attacks. To keep its security, RSA depends on the difficulty of factoring

huge semi-primes. RSA's security presumptions are called into question by Shor's algorithm's quick factorization

on a quantum computer, which has prompted research into post-quantum cryptography solutions to guarantee

secure communication in the quantum age. Even with parallel computation, the speed and storage capacity of

classical computing are constrained. A key idea in quantum computing is quantum parallelism, which allows

quantum systems to carry out several computations at once. In contrast to classical portions. The scope of this

paper is to understand the fundamentals of Quantum Computing, the current state of Shor’s algorithm

implementation, and efficiency, particularly its application in compromising public key cryptosystems like RSA.

The project aims to achieve how factorization is done through classical methods and further, how is this done

through Shor’s algorithm and QFT techniques.

Keywords: Quantum Computing; Shor’s Algorithm; RSA Encryption; Cryptography; RSA; Shor’s Algorithm;

Quantum Parallelism; Superposition; Hilbert Space; Quantum Error Correction.

--

Received: 9/5/2024
Accepted: 11/5/2024

Published: 11/15/2024

--

* Corresponding author.

https://gssrr.org/index.php/JournalOfBasicAndApplied/index
mailto:aashutoshsr27@gmail.com

International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 74, No 1, pp 154-175

155

1. Introduction

In the new digital age where people are using digital devices, communicating, and storing info in the cloud one

of the most challenging aspects will be the processing speed of classical computers to process such a huge

database. So, the next step towards technological advancement in the area of computer technology is quantum

computing. So, as compared to classical computers, which utilize bits that can only be either 0 or 1, quantum

computers use qubits, which can be 0,1, or both at the same time, hence, enabling them to solve problems far more

quickly than conventional computers. But this will probably have a significant impact in the area of Cryptography

giving a challenge to develop a more robust algorithm that can make the information quantum safe.

Conventionally, the RSA algorithm is used to keep information secure, but quantum computers can break it using

Shor's algorithm. This means we need to find new ways to protect our information from quantum attacks. So,

there is a need to use quantum computing to make the RSA algorithm stronger. By doing this, we can add an extra

layer of security to keep our data safe from future threats.

1.1. The BLOCH Sphere

To visualize how qubits operate a model called the Bloch sphere has been proposed as shown in Figure 1. The

model is like a map depicting all the possible states a single qubit can be in. Consider the sphere, like a beach ball,

where each spot on its surface depicts a different qubit state. Like, on the top, the North Pole, is a qubit in the state

"0", while at the bottom, the South Pole, is a qubit in the state "1". Everywhere else on the sphere shows a mix of

both "0" and "1" states, called a superposition. Interpreting the Bloch sphere is the best way to grasping how qubits

operate. It helps to understand how quantum gates, like X, Y, and Z gates, change a qubit's state. It’s interesting

to see how measurements force a qubit into either "0" or "1". In summary, the Bloch sphere is a useful tool for

navigating the complex world of quantum computing.

Figure 1: The Bloch sphere: showing the Hilbert space of one qubit. The eigenstates lie on the

corresponding axis (x, y, or z)[15].

Usually, the Bloch sphere is depicted using the ‘statevector’ simulator, which represents the quantum circuit's state

vector.

International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 74, No 1, pp 154-175

156

1.2. The Quantum Phenomena

As can be seen from the Bloch sphere, what makes quantum computing a most remarkable and unique proposition

is the ability of a quantum object, like an atom or photon to exist in multiple states or locations, while the classical

objects can only occupy a single state or location at any given time. That means that an atom can be in two different

states at once. This is called the Superposition that lies at the heart of quantum mechanics and serves as the

foundation of quantum computing. So we can say that qubits (quantum bits) can exist in a linear combination of

multiple states simultaneously. The actual power of superposition is more apparent when multiple qubits are

considered. In a quantum computer with n qubits, it can exist in a superposition of 2n states or a computational

basis. This exponential increase in information-carrying capacity is what far surpasses that of classical systems.

In quantum physics, a collection of complex numbers—more precisely, 2n-1 complex numbers—are needed to

describe the state of a system, where n is the number of qubits involved [6]. In a 2n-1 dimensional vector space,

the quantum system's state is represented by a point. The system's current state is represented by a unit-length

vector in this vector space, also referred to as the Hilbert space, with 2n states as basis vectors. We require 2n-1

complex numbers to fully characterize the state, as multiplying this state vector by a unit-length complex phase

does not change the system's behavior. Usually, this superposition of states is shown by Equation (1):

(1)

Where the amplitudes ai are complex numbers such that ∑ |ai|2 and each |Si⟩ is a basis vector of the Hilbert space.

|ψ⟩ = a0|S0⟩ + a1|S1⟩ + a2 |S2⟩ + …+ a 2
n
-1|S2

n
-1 ⟩ (2)

In Equation (2), the values a0, a1, a2 ... a2
n
-1 are the amplitudes of complex probabilities According to Born's rule,

when we measure the qubit, one of the eigenvalues of the self-adjoint operator will be the result if an observable

corresponding to the self-adjoint operator is measured in a system with normalized_wave_function [1].

Following Quantum Measurement According to Equation (3), we may state that the Qubit (ψ) superposition state

will collapse to a certain eigenstate |Si⟩ with the Born probability, completely characterizing the state. Usually, this

superposition of states is shown by Equation (1):

Probability of collapsing on Eigenstate

|Si⟩= |ai|2 (3)

The probability amplitudes a0, a1, a2…. ...a2
n
-1 also satisfies the normalization condition:

|a0|2 + |a1|2+ |a2|2 + ... + |a2
n
-1|2 =1 (4)

Equation (4) indicates that this normalization guarantees that the likelihood of measuring the Qubits in any of the

 2n -1

 ∑ ai |Si⟩
 i=0

International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 74, No 1, pp 154-175

157

states |S0⟩, |S1⟩, |S2⟩ ... |S2n−1⟩ is unity.

Let’s try to understand the other quantum phenomena like; Entanglement and tunnelling. Entanglement refers to a

phenomenon in which the qubits in a superposition state cannot be factorized. It converts a superposition state into

a Bell State. Original qubits cannot be derived from the bell state. For example,

|00> + |11> is a Bell state. It cannot be broken into qubits.

|00> +|01> = |0> (|0>+|1>) is not a Bell state as it can be broken into states.

Entanglement is another important quantum phenomenon in which two quantum objects, although separated by

large distances, become linked in such a way that their properties are correlated. That means irrespective of the

physical distance between two objects, measuring one feature affects the other instantaneously in real-time. Atoms

can also get entangled, which means that regardless of the distance between them, the state of one atom can affect

the state of another.

Quantum tunneling is the way how quantum objects pass through potential barriers, even when they lack sufficient

energy to overcome those barriers according to classical physics. The atoms being in a state of superposition, exhibit

behaviors that defy classical intuition. For example, they can traverse solid obstacles, such as walls, without causing

any damage—a phenomenon known as "tunneling."

Uncertainty is also a very important phenomenon of quantum physics, as the Heisenberg uncertainty principle states

that a particle's momentum can be determined less precisely the more precisely its position is known, and vice

versa. To put it more clearly, one cannot know a particle's precise position and momentum at the same time,

underscoring the inherent uncertainty at the quantum level.

1.3. RSA Algorithm

RSA (Rivest-Shamir-Adleman) encryption is the conventional method of a public-key cryptographic technique that

ensures secure data transmission. The concept is simply based on the mathematical challenge of factoring large

composite numbers into their prime factors. The security of RSA is based on the concept that, while multiplying

two large prime numbers is computationally easy, factoring the resulting product is very difficult and time-

consuming with classical computers.

1.3.1. Key Generation Steps

 Consider two large prime numbers, ‘n1’ and ‘n2’ are selected.

 The product, N = n1 x n2, is calculated where N is used as the modulus for both the public and private keys.

 The totient function ϕ(N) = (n1-1)(n2-1) is computed, representing the count of numbers less than N that

are coprime to N

 The algorithm selects an encryption key, an integer e, is chosen such that 1 < e < ϕ (N) and e is coprime

with ϕ(N). ‘e’ becomes the public exponent. This pair (e, N) forms the public key, used for encryption.

International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 74, No 1, pp 154-175

158

 The private exponent d is computed as the modular multiplicative inverse of e modulo ϕ(N), satisfying d ×

e ≡ 1 (mod ϕ(N). The private key (d, N) is kept secret and used for decryption.

1.3.2 Encryption

 The plaintext message M is converted into an integer m to the power of e modulo N.

 The plaintext message resulting in the ciphertext C ≡ me (mod N)

1.3.3 Decryption

 The ciphertext ‘C’ is decrypted using the private key ((N, d) as m≡ Cd (mod N).

 The original message M is recovered from m

It can be seen that the strength of RSA encryption is very much dependent on the challenge of factoring large

composite numbers into their prime factors. The public key consists of a product of two large prime numbers, and

the private key is used to decrypt the message, relying on the difficulty of reverse-engineering the original primes.

Classical computers find it hard to decode, especially as the key size increases, making RSA secure against current

computing power. However, Quantum Computers with the advent of the algorithm like Shor’s can break RSA

encryption as Shor’s algorithm can factor large numbers exponentially faster than the best-known classical

algorithms. It does this by leveraging the properties of quantum superposition and entanglement, which allow

quantum systems to explore multiple possibilities simultaneously

2. Shor’s Algorithm

Shor’s algorithm simplifies the tough task of breaking down big numbers into their prime factors, which is

important in math and coding. Normally, this task takes a lot of time as numbers get bigger because it's complex.

Using Shor's algorithm needs big and accurate quantum tools, making it a tough experiment. But Shor's algorithm

is revolutionary because it makes factorization much easier by using quantum principles like doing multiple

calculations at once and combining different states of data.

Shor’s algorithm is composed of three parts-

 The first part turns the factoring problem into a period-finding problem using number theory, which can

be computed on a classical computer.

 The second part finds the period using the quantum Fourier transform and is responsible for the quantum

speedup of the algorithm.

 The third part uses the period found to measure the factors.

Shor’s algorithm simplifies the tough task of breaking down big numbers into their prime factors, which is

important in math and coding. Normally, this task takes a lot of time as numbers get bigger because it's complex.

Using Shor's algorithm needs big and accurate quantum tools, making it a tough experiment. But Shor's algorithm

is revolutionary because it makes factorization much easier by using quantum principles like doing multiple

International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 74, No 1, pp 154-175

159

calculations at once and combining different states of data.

Broadly the two quantum registers are prepared using Shor's Algorithm. The integer to be factored (designated as

"a") is stored in the first register, and the "period-finding" function is assigned to the second register. The QFT is

a quantum analogue of the classical discrete Fourier transform and is an essential tool for translating a function's

periodic behavior into the frequency domain

Figure 2: High-level Shor's algorithm diagram. The bottom register made up of n qubits, contains the

superposition of values ax mod N that have been computed by the Uf block; the top register, made up of 2n

qubits, stores the superposition of numbers 0…. [2, N−1]. A high probability method of determining the period

of the function f (x) = ax mod N involves classical postprocessing of the measurement in the computational basis

following the QFT block.

2.1. Steps in Shor’s Algorithm for Factorization

1. To begin, consider a number N to be factored.

2. Choose an Appropriate "a": The next step is to choose a positive integer "a" at random that is less than "N" and

roughly prime to "N." Stated otherwise, ′a′ and ′N′ should not have anything in common besides 1

2 < a < N − 1, gcd (a, N) = 1 (5)

3. Quantum Period Finding: Shor's algorithm is based on this idea. We employ a quantum computer to determine

a given function's "period." The lowest positive integer "r" that is such that the period is:

ar mod N = 1 (6)

4. Classical Post-Processing: To extract meaningful information from the period 'r' that the quantum computer

produced, we must carry out a few classical computations. The prime components of N and the period 'r' are

mathematically connected.

5. Extract Factors: Next, utilize the periods "r" and "a" to determine possible factors of ‘N’ by applying a few

mathematical formulas. Finally, these computations will provide us with the prime factors of 'N'.

International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 74, No 1, pp 154-175

160

2.2. Quantum Fourier Transform (QFT)

The Quantum Fourier Transform (QFT) which plays a very important role in Shor’s algorithm, is a quantum

algorithm that efficiently transforms a quantum state into its frequency components. The QFT operates on qubits

and leverages quantum parallelism to achieve a significant speedup compared to its classical counterpart, making

it an essential tool in quantum computing.

The discrete Fourier transform in its classical version is to be applied. Both the vectors being elements of complex

space, the Classical Discrete Fourier transform applied on a vector (x0, x1, x2,..., xn-1), maps it to another vector

(y0, y1, y2,..., yn-1) [1].

So we can see that the Quantum Fourier Transform is nothing but a linear transformation on a quantum bit. It can

be easily compared to the traditional discrete inverse transform [1].

Here is the formula showing how the quantum Fourier transform operates on a quantum state |x⟩ and transfers it

to a quantum state |y⟩:

yk=
1

√𝑝
 ∑ 𝑥𝑝𝑤𝑃

𝑝𝑘
 𝑃−1

𝑝=0 (7)

In equation (7), the value p varies from 0 to P-1. P is defined as the length of the vectors where P = 2p[1].

The QFT is part of many Quantum computations that are related to the Hadamard gate, a quantum gate that puts

a qubit in an equal ‘superposition state’ in the computational basis [3].

2.3. Period-Finding Subroutine

Next, at this stage, the quantum parallelism and superposition capabilities of quantum computers play an important

role. the algorithm creates a superposition of states [3] by doing a series of modular exponentiations, with each

state corresponding to a unique value of the function’s period [3]. To achieve this a modular exponentiation gate

is implemented efficiently that computes

 ap mod P for different values of p.

Hence, eventually, the resulting superposition encodes the period of the function, which is an important factor in

the factorization process.

2.4 Quantum Measurement

The superposition of period states is collapsed into a single value by quantum measurement. The measured value

yields a rough estimate of the function's period. Because quantum measurement is probabilistic, the process may

need to be run several times before a noticeable degree of certainty is reached within the measured interval.

International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 74, No 1, pp 154-175

161

3. Shor’s Algorithm: Implementation with Examples

3.1 Process of Factorization to Period Finding

Shor's algorithm is based on number theory, which is related to periodic modulo sequences. The following number

theory conclusion is required to reduce the factorization of a number N to the issue of determining the period of

an integer 1<m<n.

Consider the periodic function,

 f(p) = mp mod(N); m being an integer coprime to N and p ≥0

As f(p) is a periodic function, assume the function has some period r. Knowing that (m0 mod N) =1 implies that

mr mod N=1 since the function is periodic and thus r is just the first nonzero power where mr = 1 (mod N)

 mr ≡ 1 mod N

 m(r/2)2 ≡ 1 mod N

 (mr/2)2-1≡ 0 mod N

If r is an even number,

 (mr/2 +1) (mr/2 -1) ≡ 0 mod N

 => (mr/2 +1) (mr/2 -1) is an integer multiple of N

If (mr/2 +1) (mr/2 -1) is not a multiple of N, then at least either one of them must have a nontrivial factor in common

with N.

So, by computing the Greatest Common Divisor gcd (mr/2-1, N) and gcd (mr/2+1, N), it will find a factor of N

which can be calculated by the Polynomial Time Euclidean Algorithm.

3.2 Classical Steps to Shor Algorithm

Consider, N=p*q; where p and q are the prime factors of N.

1. For random integer m; 1<m<N and computer gcd (m, N) using Euclid Algorithm.

2. If m and N have some common prime factors then

 gcd (m, N) =p or q or gcd (m, n) =1

=> m and n are co-prime.

International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 74, No 1, pp 154-175

162

3. Consider, r to be the period of (mr mod N) and get it computed by the period-finding machine.

4. Repeat the above steps with random values of m until r is an even number.

5. Now p and q can be found by computing gcd (mr/2 ± 1, N) as long as mr/2 ≠ 1

Consider N =15; 1<m<15; m is co-prime with 15.

20 ≡ 1 mode 15 40 ≡ 1 mode 15

21 ≡ 2 mode 15 41 ≡ 4 mode 15

22 ≡ 4 mode 15 42 ≡ 1 mode 15

23 ≡ 8 mode 15 43 ≡ 4 mode 15

24 ≡ 1 mode 15

25 ≡ 2 mode 15

26 ≡ 4 mode 15

27 ≡ 8 mode 15

Similarly, we can find the mp mod15 for other values of m (7,8,11,13,14) and tabulate as below-

 Table 1: Period Finding

It is evident that the factors of 15, which are 3 and 5, will be returned for any value of m other than 14. In a specific

instance like number 14, where (mr/2+1) or (mr/2-1) is a multiple of N, it is necessary to try a different value of m.

It can be demonstrated that, on average, only two calls to the period-finding machine are necessary to account for

this unique scenario because it happens infrequently.

m m mod15 Period r gcd(mr/2 -1,15) gcd(mr/2+1,15)

2 1,2,4,8,

12,4,8,1,2

4 3 5

4 1,4,1,4,1,4 2 3 5

7 1,7,4,13,

1,7,4,13

4 3 5

8 1,8,4,2,

18,4,2

4 3 5

11 1,11,1,11,1 2 3 5

13 1,13,4,7,

1,13,4,7

4 3 5

14 1,14,1,14 2 1 15

International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 74, No 1, pp 154-175

163

3.3 Quantum Period Finding

Steps for the quantum period finding algorithm:

1. For two coprime integers, m and N, and output r, the period of F(p) = xp mod N

2.Consider T=2 such that N2 ≤ T ≤ 2N2. Initialize two registers of qubits first an argument registers with t qubits

and second a function register with n= log2 N qubits. These registers start in the initial state:

 |ψ⟩ = |0⟩|0⟩

2. Hadamard gate to be applied on each of the qubits in the argument register to get an equally weighted

superposition of all integers from 0 to T :

 |ψ1⟩ =
1

√𝑇
 ∑ |𝑎⟩|0⟩𝑇−1

𝑎=0

3. Modular exponentiation function m mod N to be implemented on the function register, giving the state

 | ψ2 ⟩ =
1

√𝑇
 ∑ |𝑎⟩|ma mod N ⟩𝑇−1

𝑎=0

The | ψ2 ⟩ is highly entangled and exhibits quantum parallelism, which means the function entangled in parallel all

the 0 to T input values with the corresponding values of ma mod N, even though the function was only executed

once.

4. Next, QFT (quantum Fourier transform) is to be applied on the argument register, in the below state:

 | ψ2 ⟩ =
1

√𝑇
 ∑ ∑ 𝑒^(2𝑇−1

𝑧=0
𝑇−1
𝑝=0 𝜋𝑖) (

𝑝𝑧

𝑇
) |𝑧⟩| mp mod N⟩

Due to the interference, only the terms |z⟩ with

 z = qT/r => r= q(T/z)

have significant amplitude where q is a random integer ranging from 0 to r-1 and r is the period of F(p) = mp mod

N

6. To find the classical result z, measure the argument register. The continuous fraction approximation of

T/z will, with a fair degree of probability, be an integer multiple of the period r. Then, r may be found

using Euclid's approach.

International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 74, No 1, pp 154-175

164

3.4. Quantum Fourier Transform

Experimental Set up:

Figure 3: Shor’s quantum factoring algorithm for the case of m = 4

Equation (7) describes how the Quantum Fourier Transform operates on a quantum state

 ∑ 𝑥(𝑖)|𝑖𝑁−1
𝑖=0 ⟩

and maps it to the quantum state ∑ 𝑦(𝑖)|𝑖𝑁−1
𝑖=0 ⟩

 yk =
1

√𝑁
 ∑ 𝑥𝑗𝑤𝑁

𝑗𝑘
 𝑁−1

𝐽=0

 where 𝑤𝑁
𝑗𝑘

 = 𝑒^2𝜋𝑖 (
𝑗𝑘

𝑁
); affects the amplitudes of the state only.

Next, the circuit can be derived for N= 2n; QFTN acting on the input state |x⟩ = |x1…. xn⟩; xi is the most significant

bit.

 QFTN |x =
1

√𝑁
 ∑ 𝑤𝑁

𝑥𝑦
|𝑦𝑁−1

𝑦=0 ⟩

 =
1

√𝑁
 ∑ 𝑒

2𝜋𝑖𝑥𝑦/2^𝑛
|𝑦𝑁−1

𝑦=0 ⟩ ; Putting the values as 𝑤𝑁
𝑗𝑘

= 𝑒^2𝜋𝑖 (
𝑗𝑘

𝑁
) and N=2n

 =
1

√𝑁
 ∑ 𝑒

2𝜋𝑖𝑥𝑦/2^𝑛
|𝑦𝑁−1

𝑦=0 ⟩

 =
1

√𝑁
 ∑ 𝑒

2𝜋𝑖 (∑ yk/2^k 𝑁−1
𝐽=0

)𝑥
|y1 … yn𝑁−1

𝑦=0 ⟩

 =
1

√𝑁
 ∑ ∏ 𝑒

2𝜋𝑖𝑥yk/2^k𝑛
𝑘=0 |y1 … . yn𝑁−1

𝑦=0 ⟩ ; After expanding the exponential of ‘a’

 k=n

 =
1

√𝑁
 ⊕ (|0⟩ + e2𝜋𝑖𝑥/2k

 |1⟩); After rearranging the sum and products

International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 74, No 1, pp 154-175

165

 k=1

 =
1

√𝑁
 (|0⟩ + e2𝜋𝑖|0 … 𝑥𝑛/2k

 |1⟩) ⊕………

 …….⊕ (|0⟩+ e2𝜋𝑖|0. 𝑥1x2…xn-1xn||1⟩as e2𝜋𝑖𝑥/2

Before we build the circuit code for general N=2n , let us look at N=8, n=3

QFT8 | x1 x2
 x3 ⟩

= 1

√8
 (|0⟩ + e2𝜋i|0..x3

|
|1⟩⊕(|0⟩ + e2𝜋i|0..x2x3

|
|1⟩⊕ ⟩⊕(|0⟩ + e2𝜋i|0..x1x2x3

|
|1⟩)

Hence, the steps to creating the circuit for |y1y2
 y3⟩, remembering the controlled phase rotation gate CU, can be

summarized as below:

1. Hadamard can be applied to |x3⟩, giving the state

 = 1

√2
 (|0⟩ + e 2πi.0.x

3 |1⟩)=
1

√2
 (|0⟩ + (-1)x

3 | 1⟩)

2. Apply a Hadamard to | x2⟩, then depending on k3 (before the Hadamard gate) a CU1 (
𝜋

2
) depending on k2, and

CU1 (
𝜋

4
) depending on k3

3. Applying the rule to measure the bits in reverse order that is y3 = x1, y2= x2, y1= x3

Let’s implement the same through an example:

Factorize N=21 with coprime x =2, applying the above steps of the quantum period finding

algorithm which should return r= 6

1.Consider T=2t ; N2 ≤T≤2N2

For N=21, the smallest value of t is 9 => T=2t=512. Let us initialize two registers of qubits-

1. argument registers with t=9 qubits

2. a function register with n= log2 N = 5 qubits.

 |ψ⟩ = |0⟩|0⟩

2. Hadamard gate to be applied on each of the qubits in the argument register

 |ψ1⟩ =
1

√𝑇
 ∑ |𝑝⟩|0⟩𝑇−1

𝑝=0 =
1

√512
 ∑ |𝑝⟩|0⟩511

𝑝=0

International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 74, No 1, pp 154-175

166

3. Modular exponentiation function mp mod N can be implemented on the function register.

 | ψ2 ⟩ =
1

√𝑇
 ∑ |𝑝⟩|mp mod N ⟩𝑇−1

𝑎=0

 =
1

√512
 ∑ |𝑝⟩| 2p 𝑚𝑜𝑑 21⟩511

𝑝=0

 | ψ2 ⟩ =
1

√512
(|0⟩|1⟩+|1⟩|2⟩+|2⟩|4⟩+|3⟩|8⟩ +|4|16⟩+|5⟩|11⟩+

 |6⟩|1⟩ +|7⟩|2⟩ +|8⟩|4⟩ + |9⟩|8⟩+|10⟩|16⟩+|11⟩|11⟩+……….

 |12⟩|1⟩ +………..)

The fact that the states of the second register in each "column" are identical allows us to recognize the pattern.

Thus, to obtain the second register, we rearrange the phrases.

=
1

√512
[(|0⟩+|6⟩+|12⟩ …….+|504⟩ + |510⟩)|1⟩ + (8)

(|1⟩+|7⟩ +|13⟩……+|505⟩ + |511) |2⟩ + (9)

(|2⟩+|8⟩ +|14⟩……+|506⟩ +) |4⟩ + (10)

(|3⟩+|9⟩ +|15⟩……+|507⟩ +) |8⟩ + (11)

(|4⟩+|10⟩ +|16⟩….+|508⟩ +) |16⟩ + (12)

(|5⟩+|11⟩ +|17⟩….+|509⟩ +) |11⟩] (13)

4. We will measure the function register and then apply a quantum Fourier transform on the argument register to

simplify the ensuing equations. One of the following numbers will result from this, with an equal chance:

 {1,2,4,6,8,16,11}. Suppose that the result of the measurement was 2, then:

 | ψ3⟩ =
1

√86
 (|1⟩ + |7⟩ + |13⟩ ……. + |505⟩) |2⟩

The periodic pattern is what matters; the measurement's outcome is irrelevant. The solution to the problem is the

period of the states of the first register, and the value of the period may be found using the quantum Fourier

transform.

5. QFT (quantum Fourier transform) to be performed on the argument register:

 | ψ4⟩ = QFT(| ψ3⟩)= QFT(
1

√86
∑ |6𝑎 + 1⟩|2⟩85

𝑎=0

International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 74, No 1, pp 154-175

167

 =
1

√512
∑ ([

1

√86
∑ |6𝑎 + 1⟩|2⟩85

𝑎=0
511
𝑗=0

6. Next, measure the argument register. The probability of measuring a result j is:

 Probability (j) =
1

512 𝑥 86
| ∑ 𝑒

−2𝜋𝑖 6𝑗𝑎/51285
𝑎=0 |2

The peak at j =0,85,171, 256, 341,427. Consider that the result of the measurement yielded j=85, then following

continued fraction approximation of
512

85
, we obtain the expected result r=6.

4. Quantum Computing Platforms

There are several Quantum Computing Platforms including Qiskit and IBM Quantum Lab. A few others are -

Microsoft Quantum Development Kit, Google Cirq, Rigetti Forest, D- Wave Leap, Xanadu PennyLane, and

ProjectQ. Although all provide an open-source quantum framework, Qiskit is primarily based on Python, a widely

used and accessible programming language, and is closely integrated with IBM Quantum Experience, providing

users with cloud access to IBM's quantum processors. This integration allows for easy experimentation and testing

on real quantum hardware. It's important to note that the choice between quantum computing platforms depends

on various factors, including the specific requirements of a project, ease of use, community support, available

features, and compatibility with existing infrastructure These resources (Qiskit and IBM Quantum Lab) provide

a foundation for understanding the fundamentals of quantum computing, including the Quantum Fourier

Transform, number theory, modular arithmetic, and the quantum period finding algorithm. By mastering these

concepts, we can effectively implement the QFT within Shor's algorithm, laying the groundwork for exploring

the potential for factoring large numbers on a quantum computer.

4.1.The IBM-QISKIT

IBM Qiskit is simple to start up as a Python package, branch, or fork, just like other open-source projects. The

software toolbox for creating applications utilizing quantum computing is incredibly user-friendly. It is incredibly

small and uses very little of the resources on local computers when it is operating.

What makes it attractive is its extensive use for testing, creating, and running quantum programs. The IBM-

supported Qiskit can be used to write quantum algorithms and run them on its real quantum devices simulating to

mimic the quantum behavior. In addition, the Qiskit offers tools to visualize quantum circuits and analyze the

computation results. In conclusion, Qiskit offers a set of resources to experiment into this fascinating field. This

consists of four main components: Terra, Aer, Ignis, and Aqua [13].

5. Implementation

The next important step is the implementation of Shor’s algorithm using Python software language. However, it

can be a little challenging due to the algorithm's dependency on quantum computing principles including QFT

and quantum gates. While Python is used for the software program for computing simulation and algorithm

International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 74, No 1, pp 154-175

168

development, specialized ‘Qiskit’ libraries are used to factor large numbers while implementing Shor’s algorithm.

5.1 Basic implementation of Shor's algorithm using Qiskit for simulation

The Python code providing the basic implementation of Shor's algorithm using Qiskit for simulation provides the

output as expected as captured in Fig 4.

However, there are certain limitations due to the non-availability of quantum hardware. Running Shor's algorithm

to factor large numbers efficiently would require a quantum computer with enough qubits, which is not currently

available due to the limitations of quantum hardware.

The program was run on Windows Command prompt for input number N=12 and the Factors were received as 2

and 6 as expected.

The screenshot of the run result has been captured and presented in Figure 4 for reference.

Figure 4: Output Run on Windows command prompt

6. Challenges: Current Quantum Computing Hardware

The current quantum computing hardware has certain limitations caused by various factors such as decoherence,

gate imperfections, and environmental noise that lead to inaccuracies in quantum computations as explained

below-

Decoherence means the loss of quantum coherence in qubits. The qubits are not able to maintain superposition or

entanglement due to interaction with their environment. For Shor's algorithm to be effective, a large number of

qubits needs to remain coherent over extended periods. Hence, decoherence limits the complexity of problems

that current quantum computers can solve, as qubits lose their quantum state before computations can be

completed.

International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 74, No 1, pp 154-175

169

As we have seen, Quantum gates are the operations applied to qubits to change their state. However, due to

hardware material and design imperfections, the gates are not perfect, which leads to inaccuracies in the quantum

operations. With high gate error rates in current quantum computers, it is difficult to implement large-scale

algorithms like Shor's effectively that require precise and accurate gate operations on a large number of qubits.

Environmental noise that can arise from various sources, such as vibrations, electromagnetic fields, or temperature

changes. The presence of environmental noise increases the likelihood of errors, limiting the algorithm’s ability

to factor large numbers with high accuracy.

Quantum error rates, the frequency of errors that occur during quantum operations, make it difficult to perform

large-scale computations without significant inaccuracies. For Shor’s algorithm, even small errors can lead to

incorrect factorization results. Effective quantum error correction is essential for scaling up quantum computers

to the point where they can handle the large numbers required by RSA encryption.

Shor’s algorithm demands an exponential increase in computational resources as the size of the number to be

factored grows. With today’s hardware, the number of qubits and the coherence time required for this kind of

large-scale computation are far beyond what current quantum systems can support.

Shor’s algorithm needs to maintain error-free computation across many steps, which means that robust error

correction is necessary. The overhead required for error correction is a major limiting factor for current quantum

computers.

So as a next step, Quantum error correction techniques like the surface code play an important role the surface

codes are designed to address these challenges by encoding qubits in a fault-tolerant manner, thereby mitigating

the impact of errors on computations. The surface codes enable the detection and correction of errors, enhancing

the reliability and stability of quantum systems when running algorithms like Shor's algorithm.

Overall, the next level of advancement in quantum error correction techniques is required so that the hardware

limitations caused by high error rates in quantum systems can be overcome. By improvements in error correction

capabilities, algorithms like Shor's algorithm can be used efficiently on quantum computers, supporting the further

advancement and breakthroughs in cryptography, number theory, and other fields that benefit from quantum

computing.

7. Post-Quantum Cryptography: Lattice-Based and Multivariate Cryptography vs. RSA

As the Shor Algorithm poses a threat to RSA encryption, which relies on the difficulty of factoring large integers,

there is a need to find alternative techniques to have robust cryptography solutions in place. There are two schemes

proposed, in a post-quantum world, as alternatives to RSA - Lattice-based and Multivariate cryptographic

schemes.Lattice-based cryptography, which is in an advanced stage of research, provides robust security

guarantees, scalability, and versatility, making it a strong choice for a wide range of applications.

Multivariate cryptography, although highly efficient and particularly suited for digital signatures, requires further

International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 74, No 1, pp 154-175

170

research to establish the same level of confidence as lattice-based schemes. With the progress in quantum

computing techniques, adopting and standardizing these post-quantum algorithms will be very important to

maintain a high level of secure data communications and protection.

7.1 Recent Studies and Findings

Based on the recent findings of research on Lattice-based cryptography by Lyubashevsky, Peikert, and Regev, the

LWE-based schemes are strong, secure, and efficient. Lattice-based schemes like ‘Kyber’ and ‘Dilithium’ have

been included in NIST, the post-quantum cryptography standardization process. On the contrary, although studies

have demonstrated the efficiency of multivariate signature schemes like Rainbow, which has advanced to the final

round of the NIST, some multivariate schemes have been broken or found to have weaknesses. Hence it needs

careful analysis and selection.

8. Additional Considerations: The Impact of Grover's Algorithm on Cryptographic Methods

Like Shor's algorithm, Grover's algorithm also poses a significant threat to cryptographic methods. While Shor's

algorithm directly threatens public-key cryptosystems like RSA, Grover's algorithm necessitates adjustments to

symmetric-key lengths and hash functions, Grover's algorithm can search an unsorted database or solve

unstructured problems quadratically faster than classical algorithms. It uses a well-known technique that allows

the use of interference to amplify certain states in quantum circuits in a way that will increase the amplitude of

the value we are searching for and decrease those that we are not. Grover’s search algorithm can be broken into

two main components. The first is referred to as Grover’s oracle and the second is the Grover diffusion

operator[16].

The post-quantum cryptographic schemes discussed in section 7.1, like lattice-based and multivariate

cryptography, remain robust and secured under the dual threats of Shor's and Grover's algorithms, provided key

lengths are appropriately increased. This dual focus ensures that cryptographic methods remain secure, and

performance efficient against both types of quantum threats, maintaining data security and integrity in the quantum

computing age.

9. Conclusion

To sum up, this study examined the ground-breaking possibilities of Shor's algorithm for breaking RSA

encryption, which is currently widely used for cryptography. The included Python code makes use of the Qiskit

quantum computing framework to give a basic implementation of Shor's algorithm. This implementation shows

the basic steps of Shor's algorithm, including the quantum portion that factorizes big integers using quantum

Fourier transforms and controlled operations.

Keeping the theoretical aspects of Shor’s algorithm aside, because of the current limitations of Quantum

computers, Shor's method faces several obstacles when it comes to breaking RSA encryption. RSA encryption,

which is utilized in real-world applications, cannot be compromised by factoring big numbers at the scale that

current quantum computers are unable to perform. Even if Shor's method becomes feasible in the future, RSA

International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 74, No 1, pp 154-175

171

encryption can be reinforced by raising the key size, which will increase its resistance to attacks.

However, this study paper's examination of Shor's algorithm emphasizes how critical it is to create cryptographic

protocols that are resistant to quantum computing to protect sensitive data in the future of quantum computing.

Researchers and practitioners need to be on the lookout for changes in the field of cryptographic security as

quantum computing advances. By broadening the scope to include Grover's algorithm as mentioned above, the

analysis presents a fuller picture of the cryptographic landscape and the multifaceted challenges posed by quantum

computing. This comprehensive approach highlights the need for robust, adaptable, and forward-thinking

cryptographic solutions to ensure long-term security.

In conclusion, Shor's method is a major development in quantum computing with wide-ranging consequences for

cryptography; yet, its actual effect on RSA encryption is still being investigated and discussed. Lattice-based

schemes are primarily designed to withstand Shor's algorithm. However, they are also robust against Grover's

algorithm, as the latter only provides a quadratic speedup. This means that lattice-based encryption, which might

use 256-bit security levels, would need to be adjusted to 512-bit security to counteract Grover's algorithm. Similar

to lattice-based cryptography, multivariate schemes must also account for Grover's algorithm, but the adjustment

is less severe compared to the exponential speedup from Shor's algorithm.

To maintain the integrity and confidentiality of digital communications and transactions, we must continue to

explore and innovate cryptographic solutions as we negotiate the shift to a quantum-secure future.

Acknowledgement

I would like to extend my heartfelt gratitude to my mentor, Lawrence Lin, a Ph.D. scholar at Cornell University,

whose invaluable guidance and encouragement have been instrumental in shaping this research. His expertise in

quantum computing and his dedication to teaching have significantly enhanced my understanding and motivated

me to delve deeper into the subject. Lawrence’s insights and feedback throughout this project have been an

inspiration, and I am grateful for the time and effort he has invested in helping me achieve my research goals.

References

[1] W. C. Easttom II, Quantum computing fundamentals. Addison-Wesley Profes- sional, 2021.

[2] M. J. Nene and G. Upadhyay, “Shor’s algorithm for quantum factoring,” in Advanced Computing and

Communication Technologies: Proceedings of the 9th ICACCT, 2015. Springer, 2016, pp. 325–331.

[3] V. Kasirajan, Fundamentals of quantum computing. Springer, 2021.

[4] A. Albuainain, J. Alansari, S. Alrashidi, W. Alqahtani, J. Alshaya, and N. Nagy, “Experimental

implementation of shor’s quantum algorithm to break rsa,” in 2022 14th International Conference on

Computational Intelligence and Communication Networks (CICN). IEEE, 2022, pp. 748–752.

[5] V. Bhatia and K. Ramkumar, “An efficient quantum computing technique for cracking rsa using shor’s

algorithm,” in 2020 IEEE 5th international conference on computing communication and automation

(ICCCA). IEEE, 2020, pp. 89–94.

[6] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum

International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 74, No 1, pp 154-175

172

computer,” SIAM review, vol. 41, no. 2, pp. 303–332, 1999.

[7] T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, and

R. Blatt, “Realization of a scalable shor algorithm,” Science, vol. 351, no. 6277, pp. 1068–1070, 2016.

[8] https://medium.com/qiskit/applying-shors-algorithm-bbdfd6f05f7d

[9] https://quantum-computing.ibm.com/composer/docs/iqx/guide/ shors- algorithm

[10] https://www.nature.com/articles/s41598-021-9597

[11] Siyon Singh1, Eric Sakk, “Implementation and Analysis of Shor’s Algorithm to Break RSA

Cryptosystem Security”, January 2024.

[12] Mavroeidis, V., Vishi, K., Zych, M. D., & Jøsang, A. (2018). The impact of quantum computing on

present cryptography. arXiv preprint arXiv:1804.00200.

[13] IBM Quantum, https://learn.qiskit.org/course.

[14] Everitt, H. O. (Ed.). (2005). Experimental aspects of quantum computing. Springer Science

[15] Licentiate thesis in Physics “High Visibility of six photon entanglement”

[16] Robert Loredo, “Learn Quantum Computing with Python and IBM Quantum Experience”

Appendix -I

from qiskit import QuantumCircuit, Aer, transpile, assemble

from qiskit.visualization import plot_histogram

from math import gcd

from numpy.random import randint

import numpy as np

Function to apply the controlled U gate

def cu(a, power, n):

 """Controlled multiplication by a mod N"""

 U = QuantumCircuit(n+1)

 for iteration in range(power):

 U.swap(0, 1)

 for q in range(n):

 U.x(q+1)

https://medium.com/qiskit/applying-shors-algorithm-bbdfd6f05f7d
https://quantum-computing.ibm.com/composer/docs/iqx/guide/%20shors-%20algorithm
https://www.nature.com/articles/s41598-021-9597

International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 74, No 1, pp 154-175

173

 U.swap(0, 1)

 U.swap(1, 0)

 U = U.to_gate()

 U.name = "%i^%i mod %i" % (a, power, N)

 c_U = U.control()

 return c_U

Function to perform the quantum part of Shor's algorithm

def shor_quantum(n):

 # Choose a random number a

 a = randint(2, n)

 print("Chosen random number (a):", a)

 # Compute the greatest common divisor of a and n

 gcd_value = gcd(a, n)

 if gcd_value != 1:

 return gcd_value

 # Create a quantum circuit with 2 * n + 3 qubits

 qc = QuantumCircuit(n+4, n)

 # Apply Hadamard gates to the first n qubits

 qc.h(range(n))

 # Apply the controlled-U gates

 for q in range(n):

 qc.append(cu(a, 2 ** (2 ** q), n), [q] + list(range(n, n+4)))

International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 74, No 1, pp 154-175

174

 # Apply the quantum Fourier transform

 qc.swap(0, 3)

 for q in range(n):

 for j in range(q):

 qc.cp(np.pi / float(2 ** (q-j)), j, q)

 qc.h(q)

 # Measure the first n qubits

 qc.measure(range(n), range(n))

 # Simulate the quantum circuit

 simulator = Aer.get_backend('qasm_simulator')

 compiled_circuit = transpile(qc, simulator)

 job = simulator.run(assemble(compiled_circuit))

 result = job.result()

 counts = result.get_counts(qc)

 # Return the result

 return counts

Main function to find the factors using Shor's algorithm

def shor_factorization(N):

 # Check if N is even

 if N % 2 == 0:

 return 2

 # Perform the quantum part of Shor's algorithm

International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 74, No 1, pp 154-175

175

 while True:

 counts = shor_quantum(N)

 for measured_value in counts:

 measured_int = int(measured_value, 2)

 if measured_int % 2 != 0:

 print("Measured", measured_int)

 continue

 guessed_divisor = gcd(measured_int, N)

 if 1 < guessed_divisor < N:

 print("Guessed:", guessed_divisor)

 return guessed_divisor

Input number

N = int(input("Enter the number to factorize: "))

#Taking N = 12 as sample

f = shor_factorization (12)

print ("Factors:", f, "and", 12 // f)

