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Abstract 

In today's digital era, deepfake technology presents both innovation and peril, with hyper-realistic synthetic 

media capable of widespread deception. This research delves into deepfake detection, focusing two deepfake 

detection models, namely, the VIT image classifier and Meso4 model. Utilizing convolutional neural networks, 

VIT analyzes images, while Meso4 scrutinizes at a mesoscopic level. A comparative analysis evaluates their 

effectiveness in discerning authentic from manipulated content. Using the Open Forensics dataset and self-

generated content, VIT achieves remarkable accuracy, while Meso4 encounters challenges, such as limited 

generalization, task-dependent accuracy levels, etc. Therefore, in the proposed work additional features like, 

Eye movement error detection, Skin texture inconsistency detection and Facial feature inconsistency detection 

are integrated into a customized model, which results significantly in augmenting accuracy and computation 

speed compared to above compared models. This research work emphasizes the need for advancing unbiased 

deepfake detection methods, urging vigilance in safeguarding privacy and security amidst pervasive digital 

deception. 
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1. Introduction 

Detecto - Deepfake Detector explores deep learning models for detecting deepfakes, examining Meso4 and ViT 

models' strengths and limitations. In recent years, deepfake technology's rise has sparked both fascination and 

concern due to its potential for misinformation [2]. Deepfake detection is crucial for maintaining digital media 

integrity, combating misinformation's harmful effects. Various detection models, including DeepFace Lab and 

DeepFake Detection, employ diverse methodologies to identify deepfake manipulation. Despite their strengths, 

continual refinement is necessary to address emerging challenges and adversarial tactics. Detecto proposes a 

user-centric approach, offering a mobile application empowering individuals to analyze media for signs of 

manipulation. By integrating Vision Transformers (ViT) and a custom model, Detecto delivers accurate 

deepfake detection while prioritizing user choice and customization. Through rigorous evaluation and real-world 

validation, Detecto aims to contribute to deepfake detection advancement and promote a safer digital 

environment.The research made along the literature survey contributed with vast number of details regarding 

various other models, datasets and their pros and cons [1]. This study tackles the impact of deepfake media on 

public discourse and legal proceedings, emphasizing the need for accurate detection in digital forensics. It 

compares face-detection classifiers—Custom CNN, VGG19, and DenseNet-121—using an augmented dataset 

of real and fake faces. Data augmentation improves performance and reduces computational resources. 

Preliminary results show VGG19 achieves the highest accuracy at 95%, highlighting its potential for detecting 

deepfake media and aiding in identity protection [8]. This study addresses deepfakes' threats to privacy, 

democracy, and security. It emphasizes urgent detection methods using machine learning and deep learning 

techniques like SVM, random forests, and CNNs. It also highlights the need for policies, regulations, individual 

actions, and technological advancements to combat deepfakes [12]. This work presents a novel Deepfake 

detection approach using a Convolutional Vision Transformer (CVT), combining CNN and ViT components. 

The CNN extracts features, processed by the ViT's attention mechanism for categorization. Trained on the 

DFDC dataset, the model achieves 91.5% accuracy, an AUC of 0.91, and a loss of 0.32, demonstrating 

competitive performance [22]. This paper presents an efficient vision transformer for DeepFake detection, 

addressing CNN limitations. It combines CNN features with patch-based positioning for local and global image 

feature capture, and a distillation token for better generalization. The model outperforms SOTA, achieving 

higher AUC and F1 scores on the DFDC test dataset. Ensemble learning further enhances performance, with 

high AUC and F1 scores on the Celeb-DF (v2) dataset, demonstrating its effectiveness.These findings 

underscore the pervasive threat of deepfake technology, highlighting its potential for misinformation, fraud, and 

reputation damage. The rapid evolution of deepfake tools necessitates continuous improvement in detection 

techniques. Combining advanced algorithms like CNNs, Vision Transformers, and ensemble learning, along 

with integrating human judgment, enhances detection robustness. A holistic approach, including technological 

advancements, public education, and regulatory measures, is essential to mitigate societal risks and safeguard 

digital content and identity. 

2. Methodology 

The proposed workflow for deepfake detection is divided into two phases. Phase 1 involves analyzing two 

models: Meso4, which uses convolutional layers and heatmap thresholds for efficient and interpretable 
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detection, and ViT, which employs a Vision Transformer with self-attention mechanisms for high accuracy and 

generalization. The Phase 2 introduces an ensemble model that combines the strengths of Meso4 and ViT. This 

model enhances detection by analyzing key facial features such as eye movement, skin texture, and facial 

expressions, thereby improving accuracy and robustness in identifying deepfakes. 

2.1. Phase 1: Analysis of Meso4 and ViT model 

2.1.1. Meso4 model 

The Meso4 model [3], short for Mesoscopic Model 4, is a deep learning architecture (Fig 1) specifically 

designed for the task of detecting deepfake images. It operates at a mesoscopic level, which refers to a scale 

intermediate between microscopic (fine-grained details) and macroscopic (overall structure). The architecture of 

the Meso4 model typically consists of several convolutional layers followed by pooling layers and fully 

connected layers [3]. 

 

Figure 1: Meso4 Architecture [13]. 

2.1.2. Meso4 model Architecture 

 Input Layer: Takes an input image as a matrix of pixel values, standardized to a fixed size. 

 Convolutional Layers: Core of the Meso4 model, performing convolution operations to extract 

features. Typically includes four layers, each with multiple filters generating feature maps. 

 Activation Functions: Introduces non-linearity post-convolution using functions like ReLU or Leaky 

ReLU to learn complex patterns. 
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 Pooling Layers: Reduces spatial dimensions of feature maps via max pooling, retaining important 

information. 

 Fully Connected Layers: Performs high-level feature extraction and classification. The output layer 

has a single neuron with a sigmoid activation, indicating the probability of the image being a 

deepfake. 

 Training and Optimization: Trained on labeled images (authentic or manipulated). Uses loss 

function minimization and optimization techniques like SGD or Adam to improve performance. The 

Meso4 model captures mesoscopic-level features for effective deepfake detection, balancing 

computational efficiency and accuracy.  

2.1.3. Meso4 model stepwise workflow 

 Load the Image: First, we load the image that we want to analyze. 

 Convert Image to NumPy Array: Next, we convert this image into a NumPy array, which represents 

the image in matrix form. 

 Generate Heatmap: We then generate a heatmap from this matrix. The heatmap helps us visualize 

important areas of the image. 

 Determine Threshold Value: Using the heatmap, we derive a threshold value. This value will be 

crucial for making decisions later on. 

 Initialize the Model: After that, we initialize the Meso4 model and load its pretrained weights. 

 Preprocess the Image: We preprocess the image to prepare it for prediction. 

 Calculate Confidence Level: With the threshold value, we calculate the confidence level of the 

model's prediction. 

 Classify the Image: Based on the confidence level, the model classifies the image as either genuine 

or manipulated. 

 Accentuate Critical Regions: The heatmap helps us highlight critical or distinctive regions in the 

image. 

 Enhance Interpretability: By fusing the heatmap with the model, we improve the model's ability to 

identify important regions, making its decisions easier to understand. 

 Adjust Model Attention: The model dynamically adjusts its focus based on the heatmap information, 

which helps reduce false positives and negatives. 

 Improve Model Robustness: This process makes the model more resistant to adversarial attacks, 

enhancing its accuracy and resilience in detecting deepfakes. 

2.1.4. ViT Model 

The Vision Transformer (ViT) model is a state-of-the-art deep learning architecture specifically designed for 

image classification tasks (Fig 2). Unlike traditional convolutional neural networks (CNNs), which rely on 

convolutional operations for feature extraction, the ViT model utilizes self-attention mechanisms to capture 

long-range dependencies within images [20]. Here's a detailed breakdown of the architecture of the ViT model: 



International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 74, No  1, pp 176-193 

 

 
 

180 
 

 

Figure 2: ViT model Architecture [14] 

2.1.5. ViT Model Architecture 

 Patch Embeddings: The input image is divided into fixed-size patches, linearly embedded into 

lower-dimensional representations. These are flattened into a sequence of tokens, each representing 

a patch. 

 Positional Encodings: Added to patch embeddings to convey spatial relationships, using learned or 

predefined sinusoidal functions. 

 Transformer Encoder Layers: Multi-head Self-Attention Mechanism: Allows the model to attend to 

different parts of the input, capturing global dependencies by computing attention scores between 

tokens. 

 Feedforward Neural Network (FFNN): Applies non-linear transformations on each token using fully 

connected layers with ReLU activation.  

 Layer Normalization and Residual Connections: Applied after each sub-module to stabilize training 

and facilitate gradient flow, mitigating the vanishing gradient problem. 

 Classification Head: Final token representations are aggregated (mean pooling or classification 

token extraction) and fed into a feedforward neural network classifier with a softmax activation to 

assign class probabilities. 

 Training and Optimization: Trained using supervised learning to minimize a loss function (e.g., 

cross-entropy loss). Uses optimization techniques like SGD or Adam to iteratively update model 

parameters. The ViT model uses self-attention mechanisms to capture global dependencies in 

images, achieving state-of-the-art performance in image classification. 

2.1.6. ViT model stepwise workflow 

 Start with Dataset Loading: The first step begins by loading dataset using the PIL library. This 

initial setup is crucial as it ensures efficient handling of data, which is essential for robust model 

training and evaluation. 

 Mapping Labels and IDs: Once loaded, map labels and IDs within the dataset. Here, a label of zero 

denotes fake examples, while one indicates real instances. This mapping provides the foundational 
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ground truth necessary for supervised learning. 

 Splitting for Training and Testing: With labels established, the dataset is methodically split into 

separate training and testing sets. This division allows us to assess how well this model generalizes 

beyond the data it's been trained on, a critical measure of its effectiveness. 

 Integrating the Vision Transformer Model: Moving forward, integrated a pre-trained Vision 

Transformer (ViT) model into this workflow. This involves loading the model and setting up a 

processor tailored to its specifications, ensuring it can effectively extract features and classify 

images as required. 

 Aligning Image Sizes: To optimize the ViT model's performance during both training and 

evaluation phases, align the sizes of input images with the expectations of the model. This alignment 

enhances the flow of information and computational efficiency. 

 Enhancing Robustness with Image Transformations: The next step involves applying various image 

transformations. These modifications bolster the model's ability to handle diverse dataset variations, 

ultimately improving its robustness and ability to generalize effectively. 

 Defining the Collate Function: A collate function is defined to streamline the process of batching 

data for model training. This function optimizes efficiency and ensures data is processed in a 

structured manner during training sessions. 

 Loading Pre-trained Weights: Leveraging knowledge gained from previous training sessions, load 

pre-trained weights into ViT model. This step accelerates convergence during subsequent training 

phases, saving valuable time and computational resources. 

 Training and Evaluation: With preparations complete, the model undergoes rigorous training and 

evaluation using a validation set. This iterative process provides crucial insights into the model's 

learning progress and its ability to accurately predict outcomes on unseen data. 

 Real-Time Predictions: Demonstrating practical application, upload an image into the pipeline to 

showcase the ViT model's real-time prediction capabilities. This step underscores its potential for 

immediate decision support in various scenarios. 

 Interpreting Results: Finally, results from the model are presented in a clear and concise manner, 

displaying scores and corresponding labels. This summary ensures easy interpretation of 

predictions, supporting informed decision-making based on the model's outputs. 

2.1.7. Comparing the Two models 

Meso4: While Meso4 offers advantages like efficiency, interpretability, and lower resource requirements, its 

accuracy can vary depending on the specific deepfake detection task (Table 1). This makes it a suitable choice 

for real-time applications that prioritize interpretability and speed over peak accuracy [15]. 
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Table 1: Characteristics Comparison of ViT and Meso4 models 

ViT: ViT excels in accuracy and generalization, making it powerful for handling diverse datasets. However, its 

larger size translates to longer training times and slower inference speeds. Additionally, ViT may not be ideal 

for video applications due to compatibility limitations. However, its strong transfer learning capabilities and the 

availability of pre-trained models enhance its versatility for various image classification tasks [20]. 

To address the limitations of each individual model, the study proposes a hybrid approach. This method 

leverages ViT's superior image processing for analyzing individual video frames while addressing 

computational concerns. Furthermore, a novel model is introduced that focuses on analyzing three key features 

crucial for deepfake detection: eye movement, skin texture and facial expressions inconsistencies. By analyzing 

and comparing these features across video frames, this model aims to boost detection accuracy. This facial 

feature analysis model can then be combined with ViT for further improvement in image classification within 

the context of deepfake detection [15]. 

2.2. Phase 2: Proposing an Ensemble Model 

To enhance performance, a custom ensemble model is proposed in Fig 3, combining the strengths of the Meso4 

and ViT models. This model addresses computational limitations and leverages ViT's superior image 

processing. It focuses on analyzing three key facial features to improve deepfake detection. 

• Eye Movement Error Detection: Identifies inconsistencies in eye movement patterns. 

• Skin Texture Detection: Uncovers manipulation signs through skin irregularities. 

• Facial Expression Detection: Detects unnatural facial expressions. 

Feature Meso4 ViT 

Model Size & Complexity Compact, Moderate Large, High 

Training Time & Inference Speed Efficient, Fast Slower, Time-consuming 

Accuracy Task-dependent High 

Generalization Limited Excellent 

Resource Requirements Low High 

Interpretability High Lower 

Transfer Learning Limited Strong 

Pre-trained Models Not Common Widely Available 

Video Compatibility Suitable Limited 
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Figure 3: Proposed Ensemble model diagram 

The model analyzes and compares these features across video frames for enhanced detection accuracy. Trying to 

integrate this custom model with ViT improves image classification, despite increased computational demands, 

offering superior accuracy in identifying deepfake content. 

2.2.1. Eye movement error detection 

This feature detection work detects potential deepfakes in a video by analyzing the blinking rate using pre-

trained classifiers from OpenCV, which leverage Haar feature detection to identify faces and eyes. Initially, the 

classifiers for faces and eyes are loaded. The code then processes each video frame by converting it to grayscale 

for better eye detection and applying noise reduction to improve image quality. The face classifier identifies 

faces, and within these faces, the eye classifier searches for eyes. When eyes are first detected, a timer is 

initiated to measure the duration between blinks. The code tracks frames where eyes are not detected after being 

seen earlier, counting these moments as blinks. After processing the entire video, the blinking rate is calculated 

by dividing the total blinks by the elapsed time. This rate is compared to a predefined threshold, as deepfakes 

might struggle to realistically simulate natural blinking patterns, potentially resulting in a lower blinking rate 

than expected in a real human. If the calculated rate falls below the threshold, the code raises a flag suggesting a 

possible deepfake. The threshold value can be adjusted based on the specific use case and desired sensitivity for 

deepfake detection [16]. 

2.2.2. Algorithm for eye movement error detection code 

a. Load pre-trained classifiers for face and eye detection from OpenCV. 

• Define a threshold for blinking rate (e.g., blink_threshold). 

• Initialize variables: 

• blink_count to track the number of detected blinks. 

• total_frames_processed to count the total frames analyzed. 
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• elapsed_time to measure the time elapsed for blinking duration. 

b. Process Video: 

• For each frame in the video: 

• Convert the frame to grayscale. 

• Apply a noise reduction filter to improve image quality. 

c. Face Detection: 

• Use the face classifier to identify faces in the frame. 

• If a face is detected: 

• Focus on the region of interest (ROI) containing the face 

d. Eye Detection: 

• Utilize the eye classifier to detect eyes within the ROI. 

• If eyes are detected: 

• If it's the first time eyes are detected, start a timer to measure blinking duration. 

• If eyes are not detected after being seen earlier, count it as a blink and increment blink_count. 

e. Calculate Blinking Rate: 

• After processing all frames: 

• Calculate the elapsed time from the timer. 

• Calculate the blinking rate by dividing blink_count by the elapsed time. 

f. Detect Deepfake: 

• Compare the blinking rate to the predefined threshold (blink_threshold). 

• If the blinking rate is below blink_threshold: 

• Raise a flag indicating a potential deepfake presence. 
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2.2.3. Skin Texture Consistency Detection 

This feature detection work uses libraries like OpenCV, NumPy, and PIL for robust image processing and deep 

learning to analyze skin texture consistency in videos. A trained Haar Cascade classifier detects individuals 

within video frames, forming the basis for skin texture analysis. Each frame is examined using this classifier, 

and skin texture is analyzed with techniques like Gaussian blur and Laplacian filtering to identify variations. 

OpenCV's VideoCapture function loads the video, and a while loop processes each frame to detect individuals 

and assess skin texture. Performance is optimized with parallel processing via ThreadPoolExecutor. The code 

tracks skin texture consistency across frames, calculating percentages of consistent and inconsistent textures. 

These metrics guide the classification of the video's authenticity, helping to identify potential manipulation by 

highlighting skin texture variations indicative of digital deception. 

2.2.4. Algorithm for skin texture Consistency detection in videos 

a. Initialization 

• Load pre-trained Haar Cascade classifier for full-body detection. 

• Define parameters such as threshold values for consistency assessment. 

• Initialize variables to track consistent and inconsistent texture predictions. 

b. Video Loading: 

• Utilize OpenCV's VideoCapture function to load the input video. 

• Prepare the video for analysis, ensuring seamless access to frame data. 

c. Frame Processing Loop 

• Iterate through each frame of the video: 

• Apply the pre-trained Haar Cascade classifier to detect individuals within the frame. 

• For each detected individual: 

• Analyze skin texture using advanced techniques such as Gaussian blur and Laplacian filtering 

to highlight variations. 

• Evaluate consistency in skin texture across frames to track counts of consistent and 

inconsistent predictions. 

d. Consistency Assessment 
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• Assess texture variations within consecutive frames to determine consistency. 

• Track counts of consistent and inconsistent texture predictions to unravel dynamics of skin 

texture nuances throughout the video. 

e. Video Classification 

• Calculate percentages of frames with consistent and inconsistent skin texture predictions. 

• Utilize these metrics as indicators for video authenticity. 

• Guide the classification process to determine whether the video is authentic or potentially 

manipulated, based on the interplay between skin texture variations and digital deception. 

2.2.5. Facial expression inconsistency detection 

This feature detection work uses a pre-trained Vision Transformer (ViT) model to analyze facial expression 

consistency in videos for deepfake detection. It imports essential libraries like OpenCV, Torch, PIL, and 

transformers for advanced image processing and model loading. The code loads a pre-trained ViT model from 

the "trpakov/vit-face-expression" checkpoint for high-performance image classification. Each video frame is 

processed into a PIL image, pre-processed by the ViT feature extractor, and analyzed for facial expressions. 

Using parallel processing via ThreadPoolExecutor, the code efficiently examines multiple frames 

simultaneously. It tracks the consistency of facial expressions between consecutive frames, tallying counts of 

consistent and inconsistent predictions. It then calculates the percentages of these consistencies, comparing them 

to a predefined threshold (89%). If consistency falls below this threshold, the video is flagged as fake; 

otherwise, it is deemed authentic, highlighting the role of facial expression dynamics in detecting digital 

deception. 

2.2.6. Algorithm for facial expression Consistency detection in videos 

a. Initialization: 

• Load pre-trained ViT model for facial expression classification. 

• Define a threshold for consistency assessment (e.g., 89%). 

• Initialize variables to track consistent and inconsistent expression predictions. 

b. Video Loading: 

• Utilize OpenCV's VideoCapture function to load the input video. 

• Specify the file path of the video to be processed. 
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c. Frame Processing Loop: 

• Iterate through each frame of the video using a while loop: 

• Convert the frame to a PIL Image. 

• Preprocess the frame with ViT for facial expression prediction. 

• Predict facial expressions for the frame. 

d. Consistency Check: 

• Assess consistency between predicted facial expressions in consecutive frames: 

• Track counts of consistent and inconsistent expression predictions. 

• Compare facial expression predictions between consecutive frames to determine consistency. 

e. Video Classification: 

• Calculate the percentage of frames with consistent facial expression predictions. 

• Classify the video as fake or real based on the predefined threshold: 

• If the percentage of consistent predictions exceeds the threshold, classify the video as real. 

If the percentage falls below the threshold, classify the video as potentially manipulated or fake. 

2.2.7. Integrating the models to form a Multimodal Deepfake Detection System 

This feature detection work adopts a multimodal approach to deepfake detection, employing various 

functionalities synergistically to classify videos as "real" or "fake." Here's how it works: 

• Individual Feature Analysis: 

- Separate functions like detect_eye_blink, detect_skin_texture, and detect_facial_expression are defined. 

- Each function analyzes video frame-by-frame, extracting relevant information (e.g., detect_eye_blink 

identifies faces and eyes, monitoring blinking patterns). 

• Independent Processing: 

- Functions operate independently, providing separate "real" or "fake" classifications. 
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- The code utilizes a divide-and-conquer approach, combining weighted insights from each function to 

make the final decision. 

This approach enhances deepfake detection accuracy by leveraging diverse analysis methods, catering to both 

images and videos effectively. 

3. Experimentation and Results 

Dataset Details: This section outlines the datasets used in comparing the Meso4 and ViT classifiers and 

enhancing the custom model. Each dataset was selected to meet specific model requirements: 

Meso4 Dataset: A curated dataset of 2,043 images categorized by difficulty. It includes 960 fake and 1,081 real 

images for balanced training, testing, and validation. 

ViT Dataset (Open Forensics): Comprising 190,305 images, it includes 70,000 fake and 70,000 real images for 

training, with separate sets for testing (5,492 fake, 5,413 real) and validation (19,600 fake, 19,800 real). 

Ensemble Model Testing Dataset (Kaggle Deepfake Images): Includes 3,462 fake images, 700 real images, 

3,462 fake videos, and 700 real videos for training, validation (678 fake images, 136 real images, 678 fake 

videos, 136 real videos), and testing (790 image directories, 790 video files). 

DFDC Dataset: Testing utilized 5,000 deepfake and 5,000 real videos, with training (15,000 deepfake, 15,000 

real) and validation (2,500 deepfake, 2,500 real) sets. 

These diverse datasets enabled robust training and evaluation of the Meso4 and ViT models in image and video 

classification tasks. Results are summarized in Table 2, ensuring fair comparison based on unique training and 

testing conditions. The research is divided into two phases: analyzing Meso4 and ViT models for deepfake 

image detection in phase one, and implementing a fusion model for deepfake video detection in phase two. The 

ViT model excelled on its native dataset, accurately identifying 99% of fake images but struggled on a random 

dataset, achieving only 73% accuracy for fake images and 30% for real ones. In contrast, the MESO-4 model 

performed well on its own dataset, with 82% accuracy for fake images and 72% for real ones, but struggled with 

a random dataset, achieving 100% accuracy for fake images but 0% for real ones. These results highlight the 

divergent capabilities of both models and emphasize the need for thorough evaluation methods (Table 3). 
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Table 2: Testing datasets on Meso4 and ViT models 

Dataset No of tested 

Images 

Model Real 

Detected 

Fake 

Detected 

Accuracy 

VIT dataset 100(fake) Vit 1 99 99% 

VIT dataset 100(real) Vit 99 1 99% 

Random dataset 100(fake) Vit 27 73 73% 

Random dataset 100(real) Vit 30 70 30% 

Meso4 dataset 100(fake) Meso4 18 82 82% 

Meso4 dataset 100(real) Meso4 72 28 72% 

Random dataset 100(fake) Meso4 0 100 100% 

Random dataset 100(real) Meso4 0 100 0% 

 

Figure 4: Accuracy of Dataset and Models 

The graph (Fig 4) compares "Vit" and "Meso4" models on different datasets. "Vit" performs slightly better on 

its native dataset, while "Meso4" excels on the "Random dataset." This highlights dataset influence on model 

performance, showing "Meso4's" adaptability and robustness. 

 

Figure 5: Analysis of Real and Fake Image Detection 
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The graph (Fig 5) shows dataset-model pairs. "Vit" excels in real image detection but struggles with fakes, 

especially on the "Random dataset." Conversely, "Meso4" outperforms on the "Random dataset" in real image 

detection. This reveals performance variations across datasets, emphasizing strengths and weaknesses in 

detecting real and fake image. 

 

Figure 6: Real and Fake Detection Performance through Individual Features 

The graph (Fig 6) compares real and fake video detection across facial features in "Deepfake Images" and 

"DFDC." It shows higher fake video detection in "Skin Texture" and "Expression" features, especially 

prominent in "Skin Texture." Conversely, "Eye" features detect more real videos. This reveals varying detection 

effectiveness across features, offering insights into accuracy distribution within each feature category across 

datasets. 

 

Figure 7: Analysis of accuracy of different features 
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Table 3: Performance of models with DFDC and Deepfake Images datasets 

The graph (Fig 7) shows real and fake video detection accuracy across facial features in "Deepfake Images" and 

"DFDC." Each line represents a feature like "Eye" or "Skin Texture," with points indicating accuracy. "Skin 

Texture" notably detects fake videos better, especially in "Deepfake Images." Conversely, "Expression" shows 

balanced accuracy. It offers insights into feature effectiveness, highlighting accuracy variations across datasets. 

4. Findings 

Model Performance Varied: Each model showed different accuracies across datasets. For example, the Eye 

Movement Error Detection Model performed better on DFDC than on Deepfake Images, while the Skin Texture 

Consistency Detection Model showed the opposite trend. 

Dataset Influence: Unique dataset characteristics affected model performance. DFDC was more challenging for 

some models than Deepfake Images, leading to decreased accuracy rates. 

Fusion Model Effectiveness: Combining Eye Movement, Skin Texture, and Facial Expression Detection 

showed mixed results. While it performed well in detecting fake videos in some cases, it struggled with real 

videos, especially on DFDC. 

Importance of Evaluation: Comprehensive evaluation across datasets is crucial for understanding model 

efficiency. It reveals strengths, weaknesses, and areas for improvement. 

Dataset No. of 

Videos 

Model Real 

Detected 

Fake 

Detected 

Accuracy 

Deepfake Images 90(real) Eye 32 58 35% 

Deepfake Images 110(fake) Eye 34 76 69% 

DFDC 76(real) Eye 21 56 27% 

DFDC 292(fake) Eye 111 181 61% 

Deepfake Images 90(real) Skin Texture 8 82 8% 

Deepfake Images 110(fake) Skin Texture 8 102 92% 

DFDC 40(real) Skin Texture 2 38 5% 

DFDC 87(fake) Skin Texture 4 83 95% 

Deepfake Images 37(real) Expression 22 15 59% 

Deepfake Images 47(fake) Expression 29 18 38% 

DFDC 42(real) Expression 30 12 71% 

DFDC 50(fake) Expression 34 16 32% 

Deepfake Images 90(real) Fusion 28 62 31% 

DeepFakeImages 100(fake) Fusion 23 77 77% 

DFDC 77(real) Fusion 12 65 16% 

DFDC 90(fake) Fusion 24 66 73% 
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5. Conclusions 

This work represents a pivotal advancement in the fight against digital deception by adopting a multi-faceted 

approach that leverages the strengths and addresses the limitations of existing models like Meso4 and ViT. The 

proposed workflow is divided into two phases: Phase 1 analyzes the Meso4 and ViT models, where Meso4 

offers efficiency and interpretability for real-time applications, while ViT provides high accuracy and 

generalization capabilities for diverse datasets. Phase 2 introduces an ensemble model that combines the 

strengths of both models, enhanced by a custom facial feature model targeting key areas such as eye movement, 

skin texture, and facial expressions. The results show that ViT excelled on its native dataset with 99% accuracy 

but struggled on random datasets, whereas Meso4 performed well on its dataset with 82% accuracy but failed on 

random datasets for real images. The fusion model achieved varied results, performing well in detecting fake 

videos but less so for real ones. Meso4's real-time capabilities and ViT's superior performance on diverse 

datasets are complemented by the enhanced detection accuracy from the custom model. However, performance 

varied significantly across datasets, and higher computational demands posed challenges for real-time 

implementation. Future work should focus on algorithm optimization, expanding datasets, enhancing real-time 

detection capabilities, and ensuring ethical use and regulatory compliance. In conclusion, this work offers a 

robust framework for identifying and combating digital deception by integrating Meso4 and ViT with a custom 

facial feature model, ultimately contributing to a more trustworthy and responsible digital future. 
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