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Abstract 

 The rapid development and integration of Autonomous Mobile Robots (AMRs) have revolutionised industries 

by enhancing automation capabilities. A critical challenge in this evolution is achieving effective navigation and 

obstacle avoidance, essential for deploying AMRs seamlessly in varied environments. This paper presents a 

detailed exploration of AMR navigation and obstacle avoidance advancements through the application of 

reinforcement learning, specifically focusing on small-scale Sri Lankan manufacturing facilities. The study 

demonstrates the effectiveness of Q-learning in managing dynamic obstacles within a factory environment. The 

AMR avoided obstacles in 36 out of 50 test runs, achieving a 72\% success rate, and maintained an average 

distance of 12 cm from each obstacle, underscoring the algorithm's precision in maintaining safe navigation paths 

while dynamically adapting to environmental changes. The continuous monitoring by ultrasonic sensors, 

combined with iterative learning, enabled the robot to refine its decision-making process and efficiently navigate 

through the environment. This paper also provides a comprehensive examination of conventional methods, tracing 

their historical development and assessing their role in addressing real-world challenges. The results highlight the 

significant improvements brought by reinforcement learning, particularly when integrated with sensor fusion and 

motor control technologies, to enhance navigation and dynamic object collision avoidance.  
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The study involves developing an AMR prototype, refining algorithms, and assessing system performance in 

controlled environments. By automating material transportation and addressing operational constraints in 

manufacturing settings that predominantly rely on manual labor, this paper advances the practical deployment of 

AMRs. Additionally, it discusses ethical considerations, potential limitations, and the importance of real-world 

validation, offering valuable insights for the future development and integration of autonomous mobile robotics 

in dynamic industrial environments. 

Keywords: Automation; Dynamic Object Collision Avoidance; Reinforcement Learning; Robotics; Small-Scale 

Manufacturing. 

1. Introduction  

1.1. Background and Context 

The advent of Autonomous Mobile Robots (AMRs) has significantly transformed industrial automation by 

enabling robots to perform tasks independently, thereby enhancing operational efficiency and productivity. These 

robots are increasingly adopted across various sectors, including logistics, warehousing, manufacturing, and 

healthcare, due to their ability to automate repetitive tasks such as material handling and inspection. This transition 

allows human workers to focus on more complex activities, driving overall operational excellence.In small-scale 

manufacturing environments, particularly in developing countries like Sri Lanka, the implementation of AMRs 

faces unique challenges. These settings often contend with limited resources, infrastructure, and technological 

capabilities. The high cost of advanced robotic systems and the need for specialized technical expertise can be 

prohibitive for small businesses. Moreover, the constrained physical space within these facilities requires compact 

and manoeuvrable robotic solutions.Additionally, the dynamic and less structured nature of small-scale 

manufacturing environments poses significant challenges for AMRs. Traditional systems, which rely on pre-

defined paths and fixed rules, may struggle in such contexts. Therefore, there is a need for more adaptable AMR 

solutions capable of navigating tight spaces and responding to rapidly changing conditions.This study addresses 

these challenges by developing a scaled-down AMR prototype specifically for small-scale manufacturing 

environments in Sri Lanka. The prototype aims to offer a cost-effective, efficient solution that minimizes human 

intervention while adapting to dynamic factory conditions. By incorporating reinforcement learning, the AMR is 

designed to improve its navigation and obstacle avoidance capabilities over time, contributing to the broader push 

towards Industry 4.0 and ensuring that small-scale manufacturers can benefit from advanced automation 

technologies. 

1.2. Problem Statement 

 Despite the advantages of AMRs, their effectiveness in dynamic environments is often limited by challenges in 

navigation and obstacle avoidance. Traditional methods are inadequate for environments where layouts and 

obstacles are continually changing. This study addresses these challenges by employing reinforcement learning 

(RL) to enable the AMR to learn from its environment, adapt its navigation strategies, and improve collision 

avoidance over time. 
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1.3. Aims and Objectives 

The primary objective of this research is to design, develop, and test a scaled-down Autonomous Mobile Robot 

(AMR) prototype specifically engineered to navigate dynamic factory environments using reinforcement learning 

for dynamic object collision avoidance. To achieve this goal, the study aims to develop a fully functional AMR 

prototype that is well-suited for small-scale manufacturing settings. This involves integrating reinforcement 

learning algorithms to significantly enhance the robot’s navigation and obstacle avoidance capabilities. The 

research also includes rigorous testing of the AMR’s performance in both simulated and real-world environments 

to ensure its effectiveness and reliability. Ultimately, the study seeks to provide valuable insights and 

recommendations for future research and practical applications, contributing to advancements in robotics and 

automation within similar industrial contexts. 

1.4. Significance of the Study 

This study is significant as it demonstrates the potential of reinforcement learning to enhance the operational 

efficiency of AMRs in small-scale manufacturing environments. By addressing the limitations of traditional 

navigation methods, the research offers practical solutions for industries in developing countries. The findings 

contribute to the broader field of robotics and automation by providing scalable, adaptable solutions that bridge 

the gap between large and small manufacturers, thus enabling more widespread adoption of Industry 4.0 

technologies. 

2. Literature Review 

2.1. Conventional Methods in AMR Navigation 

The development of Autonomous Mobile Robots (AMRs) has been heavily influenced by traditional navigation 

techniques that have served as the foundation for more advanced methods [1]. These conventional techniques, 

including Rule-Based Systems, Potential Fields, and Reactive Navigation, have played a crucial role in the early 

stages of AMR technology, providing basic solutions for navigation and obstacle avoidance.Rule-based systems 

are one of the earliest and most straightforward approaches to robot navigation [2]. These systems rely on a set of 

predefined rules that dictate the robot's actions in response to specific sensor inputs. For example, a rule might 

instruct the robot to turn left if an obstacle is detected within a certain distance on its right side. While rule-based 

systems are relatively simple to implement and can be effective in controlled environments Reference [2], they 

are limited by their inflexibility. The robot's behaviour is entirely dependent on the rules it has been programmed 

with, which means it cannot adapt to new or unforeseen situations [3]. This lack of adaptability makes rule-based 

systems less effective in dynamic environments where obstacles and paths may change frequently.Potential Fields 

is another traditional method used in AMR navigation. This approach involves representing the environment as a 

field of forces, with attractive forces pulling the robot toward its goal and repulsive forces pushing it away from 

obstacles. The robot navigates by following the resultant force, which guides it toward the goal while avoiding 

collisions. Potential fields are advantageous because they provide a continuous and smooth path for the robot to 

follow, and they can be easily visualized, making them intuitive for developers to implement. However, potential 

fields have significant drawbacks, particularly in complex environments. The robot can become trapped in local 
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minima, where the forces cancel out, leaving the robot stuck. Additionally, potential fields may struggle with 

dynamic obstacles, as the method does not inherently account for changes in the environment over time.Reactive 

Navigation is another conventional technique that has been widely used in AMR systems. Reactive navigation 

relies on real-time sensor data to make immediate decisions about the robot's movement [4]. Instead of planning 

a path, the robot reacts to obstacles as they are detected, allowing it to navigate through environments without 

requiring a pre-mapped route. This approach is particularly useful in environments where the layout is constantly 

changing or where obstacles are unpredictable. Reactive navigation systems are typically fast and responsive, as 

they process sensor data on the fly. However, their reliance on real-time data can also be a limitation [5]. Without 

the ability to plan, reactive systems may struggle to navigate complex environments efficiently, often leading to 

suboptimal paths or even collisions.Behaviour-based navigation is a more advanced form of reactive navigation 

that decomposes the navigation task into a set of simple behaviours, each responsible for a specific aspect of 

movement, such as obstacle avoidance or goal seeking. These behaviours run concurrently, and the robot's overall 

movement is determined by the combination of their outputs [5]. Behaviour-based systems are more flexible than 

purely reactive systems, as they can be tailored to specific tasks by adjusting the weights of the behaviours. 

However, like other conventional methods, they cannot still learn from past experiences, which limits their 

adaptability in unfamiliar environments [9].While these conventional methods have been instrumental in the 

development of AMRs, their limitations highlight the need for more adaptive and intelligent navigation strategies. 

In dynamic environments where the conditions can change rapidly, traditional methods may not be sufficient to 

ensure safe and efficient navigation. This has led to the exploration of more advanced approaches, such as 

reinforcement learning (RL), which allows robots to learn from their interactions with the environment and adapt 

their behaviour over time [13].Reinforcement Learning (RL) offers a solution to the shortcomings of conventional 

methods by enabling AMRs to improve their navigation performance through experience. Unlike rule-based 

systems, RL does not require predefined rules, and unlike potential fields, it does not rely on static representations 

of the environment. Instead, RL algorithms learn to navigate by exploring the environment and receiving feedback 

in the form of rewards or penalties. Over time, the robot develops a navigation policy that maximizes its 

cumulative reward, leading to more efficient and adaptive behaviour.In conclusion, while traditional navigation 

techniques have provided a solid foundation for the development of AMRs, their limitations in dynamic 

environments underscore the need for more sophisticated approaches like reinforcement learning. As AMR 

technology continues to evolve, the integration of these advanced techniques will be crucial for enhancing the 

autonomy and effectiveness of robots in a wide range of applications. 

2.2. Technological Advancements in AMR Navigation 

In recent years, significant technological advancements have revolutionized the field of Autonomous Mobile 

Robot (AMR) navigation, particularly through the integration of machine learning and artificial intelligence (AI). 

These developments have paved the way for more sophisticated, adaptive, and efficient navigation systems that 

can operate in increasingly complex and dynamic environments.One of the most transformative advancements is 

reinforcement learning, a subset of machine learning that has proven particularly effective in enhancing AMR 

navigation. Unlike traditional rule-based systems, which rely on predefined instructions and are limited in their 

ability to adapt to new or unexpected situations, reinforcement learning enables robots to learn and improve their 

navigation strategies through trial and error [6]. By interacting with their environment, AMRs using reinforcement 
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learning can receive feedback in the form of rewards or penalties based on their actions, allowing them to gradually 

develop optimal navigation paths and improve their decision-making capabilities over time. This self-learning 

approach is especially valuable in dynamic environments where the layout and obstacles can change 

unpredictably.Another critical advancement in AMR navigation is the development of sensor fusion technologies. 

Sensor fusion involves combining data from multiple sensors such as LiDAR, cameras, ultrasonic sensors, and 

inertial measurement units (IMUs) to create a comprehensive and accurate representation of the robot's 

surroundings. By integrating data from different types of sensors, AMRs can overcome the limitations of 

individual sensors and enhance their perception capabilities [15]. For example, LiDAR provides precise distance 

measurements, while cameras offer rich visual information. When these data sources are fused, the robot can more 

accurately detect and classify obstacles, identify landmarks, and navigate through complex environments with 

greater confidence and reliability [13].Simultaneous Localization and Mapping (SLAM) is a key application of 

sensor fusion in AMRs. SLAM enables a robot to build a map of an unknown environment while simultaneously 

determining its location within that map. This capability is crucial for autonomous navigation in environments 

where GPS is unavailable or unreliable, such as indoor facilities or dense urban areas [17].  Recent advancements 

in SLAM algorithms have made it possible for AMRs to perform real-time mapping and localization with higher 

accuracy and lower computational overhead, even in environments with dynamic or cluttered conditions.Edge 

computing has also played a significant role in advancing AMR navigation. By processing data at the edge of the 

network, closer to the source of the data, edge computing reduces latency and enables real-time decision-making. 

This is particularly important for AMR operating in fast-paced environments where quick responses to changing 

conditions are essential. Edge computing allows AMRs to process large volumes of sensor data on-site, reducing 

the need for constant communication with centralized servers and improving the robot's autonomy.Together, these 

advancements have greatly enhanced the capabilities of AMRs, allowing them to navigate more effectively, adapt 

to new challenges, and operate in a wider range of environments. As these technologies continue to evolve, we 

can expect further improvements in AMR navigation, making them even more valuable in industries ranging from 

manufacturing to logistics and beyond. 

2.3. Applications and Case Studies 

Autonomous Mobile Robots (AMRs) have seen widespread adoption across various industries, with notable 

success in logistics, warehousing, and manufacturing. In logistics, AMRs are commonly used for material 

handling, where they streamline the transportation of goods within warehouses, distribution centres, and even 

retail environments. Their ability to operate continuously without fatigue, handle diverse payloads, and navigate 

complex layouts has significantly boosted productivity [20]. For example, companies like Amazon and DHL have 

implemented AMRs in their warehouses, leading to faster order fulfilment, reduced labour costs, and enhanced 

operational efficiency.In the manufacturing sector, AMRs are employed to automate the movement of raw 

materials, parts, and finished products across production lines [21]. By integrating with existing manufacturing 

systems, these robots help maintain a steady flow of materials, reducing bottlenecks, and ensuring that production 

schedules are adhered to. In highly automated factories, AMRs also collaborate with other robotic systems, 

creating a cohesive and efficient production environment. Toyota, for instance, has implemented AMRs to 

optimize their just-in-time manufacturing processes, resulting in significant cost savings and improved production 

timelines. 
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The use of AMRs has also proven to enhance safety in industrial environments. By taking over tasks that are 

traditionally hazardous for human workers—such as moving heavy loads, navigating through dangerous areas, or 

working in environments with extreme temperatures—AMRs reduce the risk of workplace injuries. This not only 

protects workers but also decreases the likelihood of costly downtime due to accidents [22]. Despite these 

advancements, the application of reinforcement learning (RL) in AMRs is still relatively nascent, especially in 

small-scale manufacturing environments. RL offers the potential to further enhance the autonomy of AMRs by 

allowing them to learn from their environment and improve their decision-making processes over time [24]. 

Unlike traditional programming methods, which rely on predefined rules and scenarios, RL enables AMRs to 

adapt to new and unforeseen challenges, making them more versatile and capable of operating in dynamic 

environments.Several case studies highlight the preliminary use of RL in AMR applications. For instance, in 

larger, more controlled environments, RL has been used to optimize path planning and obstacle avoidance, leading 

to improved efficiency and reduced energy consumption [25]. However, these applications have primarily been 

in research settings or within large-scale industries with significant resources. Small-scale manufacturing 

environments, which often face constraints such as limited space, lower budgets, and less advanced infrastructure, 

present a unique set of challenges that have yet to be fully addressed by existing RL applications.This section will 

delve into these case studies, examining the successes and limitations of current RL implementations in AMRs. 

Additionally, it will identify critical gaps in the literature, such as the need for scalable, cost-effective RL solutions 

that can be deployed in smaller manufacturing settings. By addressing these gaps, this research aims to contribute 

to the development of more accessible and practical RL applications for AMRs, ultimately expanding their use 

across a broader range of industries and environments. 

3. Methodology 

This study employs an experimental approach to evaluate the effectiveness of reinforcement learning (RL) in 

enhancing the navigation capabilities of Autonomous Mobile Robots (AMRs) within dynamic factory 

environments. The experimental setup aligns with the study objectives, focusing on how RL can improve robot 

performance in such settings. Effective communication between the Raspberry Pi and Arduino was crucial for 

coordinating the robot's actions and processing sensor data. JSON was chosen as the data communication format 

due to its lightweight and easily parseable nature. In this setup, the Raspberry Pi issued commands to the Arduino, 

which then relayed sensor data back to the Raspberry Pi. The experimental methodology is illustrated in Figure 

1.  
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Figure 1: Experimental approach 

3.1. Research Design 

The study utilizes a controlled experimental setup to assess the Autonomous Mobile Robot (AMR) within a 

simulated industrial environment. Data is gathered through simulated tests, sensor data collection, and 

performance metrics recording to evaluate the AMR’s navigation, sensor monitoring, and overall effectiveness. 

Employing a quantitative method ensures objective and reliable data collection, which supports thorough 

statistical analysis and theory testing. The results will provide valuable insights into how Q-learning enhances 

AMR navigation and collision avoidance, contributing to advancements in industrial robotics. 

3.2. Development of AMR Prototype 

The AMR prototype is designed to be both scalable and cost-effective, making it suitable for small-scale 

manufacturing environments. Key components of the prototype include: 

• Processing Unit- Raspberry Pi 4B for high-performance computing. 

• Control System- Arduino Mega Board for sensor and motor control. 

• Sensors- Ultrasonic sensors for obstacle detection and RGB sensors for colour recognition. 

The development process involves multiple iterations to refine the robot's functionality and ensure smooth 

integration with the reinforcement learning algorithms. This iterative design approach is essential for optimizing 

performance and resolving compatibility issues. The interior and exterior views of the developed AMR are 

illustrated in Figures 2 and 3. 
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Figure 2: Exterior view of AMR        Figure 3: Interior view of developed AMR prototype 

3.3. Reinforcement Learning Algorithm 

The study employs Q-learning, a reinforcement learning (RL) algorithm, to enhance AMR's navigation 

capabilities and obstacle avoidance within the factory environment. The RL algorithm is trained in a simulated 

setting where it receives rewards for successful navigation and penalties for collisions. Through iterative learning, 

the algorithm determines the optimal path to the destination while avoiding obstacles. Key aspects of the Q-

learning implementation include: 

• Reward System-The algorithm is rewarded for successful navigation and penalized for collisions. 

• Learning Process-It continuously updates its policy based on rewards and penalties, aiming to maximize 

cumulative rewards over time. 

3.4. Simulation Environment 

A simulated factory environment is created using Pygame to replicate the real-world layout and obstacles. This 

simulation provides a controlled setting for testing and refining the RL algorithm before deployment in the 

physical AMR. The simulation environment enables to: 

• Adjust Parameters-Fine-tune RL algorithm parameters based on simulation outcomes. 

• Evaluate Performance-Assess the robot’s navigation strategy and make necessary adjustments to enhance 

performance. 

3.5. Testing Environment 

The experimental area for testing is designed to simulate a factory setup with dimensions of 170 cm in length, 75 

cm in width, and 15 cm in height. These dimensions are chosen to accommodate the AMR, which measures 34 

cm in length, 25 cm in width, and 10 cm in height, ensuring ample space for navigation and obstacle avoidance. 

Obstacles within the testing area are 17 cm in length, 15 cm in width, and 17 cm in height. 
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Figure 4: Sketch of the testing environment 

The testing environment is colour-coded to aid in orientation and assessment (Figure 4) 

• Red Area- Represents the starting point where the AMR begins its journey. 

• Green Area- Indicates the destination where the AMR recognizes its arrival as a successful completion. 

The AMR is programmed to navigate from the red area to the green area while avoiding obstacles in the designated 

obstacle zone. The layout and setup for testing the AMR prototype in a controlled environment are illustrated in 

Figures 4 and 5. 

 

Figure 5: Testing of AMR prototype in a controlled environment 

3.6. Instruments 

This study employs a range of tools and techniques to evaluate the effectiveness of the Q-learning algorithm in 

enhancing AMR navigation and collision detection. Ultrasonic sensors are utilized to detect obstacles and measure 

distances along the AMR’s path. These sensors emit ultrasonic waves and measure the time it takes for the waves 

to reflect, providing precise and real-time data for obstacle detection and navigation. The TCS34725 RGB sensors 

aid in color recognition, allowing the AMR to identify and distinguish colors in its environment, which is useful 

for tasks such as recognizing zones or objects within a factory setting. 

The processing units for the AMR include the Raspberry Pi 4B and the Arduino Mega Board. The Raspberry Pi 
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4B handles complex processing tasks, including running the Q-learning algorithm, due to its high-performance 

computing capabilities. Meanwhile, the Arduino Mega Board manages sensor inputs and motor controls, 

facilitating the interaction between the sensors and motors. The L298N motor driver is crucial for controlling the 

AMR’s DC motors and regulating movement and speed to ensure smooth and accurate navigation (Figure 6). 

The power supply is carefully tested to ensure that all components receive stable and adequate power, preventing 

potential data corruption and hardware issues. Voltage regulators, specifically the LM2596 DC-DC Step-down 

regulator for the Raspberry Pi and the HW061 DC-DC Step-down regulator for the Arduino Mega, are used to 

maintain consistent voltage levels. For simulation and data logging, datasets that mimic various factory scenarios, 

including different obstacle setups and environmental factors, are utilized to train the Q-learning model. A virtual 

factory setting is created to replicate real-world conditions, allowing controlled testing of the algorithm. Data 

logging software captures metrics such as navigation accuracy and collision frequency, providing valuable 

insights into the algorithm’s performance. 

 

Figure 6: Circuit design of AMR 

3.7. Procedure 

The procedure for evaluating the Q-learning algorithm’s performance in enhancing AMR navigation and collision 

avoidance begins with hardware setup. All components, including ultrasonic sensors, RGB sensors, the Raspberry 

Pi 4B, Arduino Mega Board, and the L298N motor driver, are tested to ensure they function correctly. The power 

supply is verified to guarantee stable and adequate power for all components, with two voltage regulators—

LM2596 DC-DC Step-down for the Raspberry Pi and HW061 DC-DC Step-down for the Arduino Mega—

ensuring consistent voltage levels. 

Once the hardware setup is confirmed, the AMR is placed in a simulated factory environment designed to mimic 

real factory conditions with various barriers and routes. The simulation, developed using PyCharm and related 

libraries, allows the application of the Q-learning algorithm for optimal navigation and collision avoidance. 

Calibration of all sensors is conducted, and the AMR’s starting position and direction are recorded. Trials are 

performed where the AMR navigates from a starting point to a designated destination within the virtual 

environment, using its sensors to detect obstacles and adjust its path based on the Q-learning algorithm. 
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Data collection involves real-time monitoring of sensor data during the trials. The AMR is tested across multiple 

scenarios with varying environmental settings to assess the effectiveness of the Q-learning algorithm. The 

performance of the algorithm is analyzed based on metrics such as navigation accuracy, collision frequency, and 

adaptability. The circuit design of the AMR, which is detailed in Figure 6 is also documented as part of the 

evaluation process. 

 

Figure 7: Testing of Sensors 

3.8. Analysis 

The study is focused on two main factors: precision in navigation and the frequency of accidents. Initially, sensor 

data was cleaned and preprocessed to remove disruptions and abnormal values, ensuring the dataset's accuracy 

and reliability for further analysis. Statistical tests were conducted to assess whether Q-learning algorithms 

significantly improve navigation accuracy and collision avoidance efficiency in a dynamic factory environment 

compared to traditional algorithms. Python's Matplotlib library will be employed to create clear and effective 

visual representations of the findings, including graphs and charts. While the primary focus was on quantitative 

data, qualitative observations was also be documented to provide contextual insights. These observations may 

include the AMRs' behavior in unforeseen situations, their reaction times to sudden obstacles, and any noticeable 

trends in their navigation strategies. 

4. Results and Analysis 

This section presents the research findings from testing the Autonomous Mobile Robot (AMR) in the designated 

factory setting. The results are organized to align with the goals and research questions of this study, demonstrating 

a clear connection between the research methodology and the collected data. 
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Initially, the integration of sensors was meticulously reviewed. The sensors were tested to ensure their seamless 

interaction with the AMR while maintaining accuracy and functionality, as shown in Figure 7. This testing 

confirmed that the sensors effectively communicated with the AMR, providing reliable data for navigation and 

collision avoidance analysis. 

After integrating the sensors, communication was established between the Arduino and Raspberry Pi. Initially, it 

was attempted to use I2C communication; however, this approach proved unstable due to discrepancies in I2C 

clock speeds, despite incorporating a level shifter. Consequently, it is transitioned to USB communication, which 

successfully resolved the issue and established stable communication. 

The first test involved guiding the robot along a direct path in the factory setting while avoiding collisions with 

obstacles. To achieve this, ultrasonic sensors was utilized to measure the distance between the robot and potential 

barriers. Eight strategically placed ultrasonic sensors provided real-time distance data, which was essential for 

maintaining a straight path. When the robot needed to turn, the motor speeds were adjusted for each wheel to 

ensure smooth and controlled turns. For right turns, the left wheel speed was increased while the right wheel speed 

was decreased, creating a differential that facilitated precise maneuvering. The process was reversed for left turns. 

In the real-world factory environment, factors such as friction, surface conditions, turning mechanisms of the 

wheels, and weight balance all impacted the AMR's turning and obstacle avoidance. In that situation, the AMR 

avoided three obstacles, including two factory walls and the obstacle (created small hardboard box), by using 

ultrasonic sensor data to adjust its movements. However, when an object was too close, there was a chance of 

collision, so the robot made turns to avoid obstacles and reach its destination. During testing, the robot succeeded 

in avoiding collisions in 36 out of 50 runs, resulting in a 72\% success rate 

Next, the focus shifted to replicating the factory setting (Figure 8) to evaluate the performance of the Autonomous 

Mobile Robot (AMR) using reinforcement learning (RL) algorithms. A virtual environment was created with 

Pygame to simulate the actual factory layout, including its dimensions and obstacles. The simulation involved 

multiple episodes, each representing a complete journey from the robot's starting point to its destination. Obstacles 

were strategically placed within designated zones to create a challenging environment. 

Using the RL algorithm, the robot navigated the obstacle-filled environment without collisions. The RL algorithm 

facilitated the robot's learning process, improving its ability to avoid obstacles and move efficiently. Throughout 

the trials, the AMR successfully learned to navigate towards its goal without encountering obstacles. The reward 

functions guided the robot's actions, penalizing collisions and rewarding successful navigation. As the episodes 

progressed, the total rewards demonstrated a clear learning curve, indicating that the Q-learning algorithm 

effectively enhanced the robot's navigation performance.  Figure 9 illustrates the improvement in the robot’s 

performance, showing an increase in total rewards per episode. 
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Figure 8: Replicated factory setting                      Figure 9: Improvement in the robot’s performance 

The simulation images effectively illustrate the robot's ability to navigate successfully and avoid collisions over 

time. These visuals highlight how the robot manoeuvres through the environment, showcasing its collision-

avoidance capabilities. In the visual representations, obstacles are marked in green, while the Autonomous Mobile 

Robot is depicted in blue.  Figure 10 provides a detailed sketch of the environment, demonstrating the robot's path 

and its interactions with the obstacles. 

 

Figure 10: Detailed sketch of the environment 

After identifying the most effective reinforcement learning (RL) algorithm in the simulated environment, it was 

implemented in the actual Autonomous Mobile Robot (AMR). The robot was then tested in a real factory setting 

that closely mirrored the simulated setup to validate the simulation results. 

The real-world experiments confirmed the simulation findings, with the robot successfully navigating the 

environment and avoiding obstacles, as shown in Figure 11. The robustness and adaptability of the RL algorithm 

were evident, enabling the robot to adjust its path in real time based on live sensor data. 
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Figure 11: Testing process of robot 

The Q-learning algorithm demonstrated its effectiveness in managing dynamic obstacles within a factory 

environment. Through iterative interactions with its surroundings, the Autonomous Mobile Robot (AMR) 

enhanced its navigation strategies, exhibiting real-time adaptability to unforeseen obstacles in both simulated and 

actual environments. Ultrasonic sensors continuously monitored distances to walls, ensuring that the robot 

maintained a safe and stable path without collisions. 

Despite minor performance discrepancies between the real-world robot and its simulated counterpart—primarily 

due to sensor noise and physical constraints not fully captured in the simulation—the Q-learning algorithm proved 

effective. The algorithm significantly influenced the robot's decision-making process. In the absence of obstacles, 

the robot travelled forward in a straight line, using side ultrasonic sensors to maintain a consistent distance from 

walls. When an obstacle was detected, the robot utilized sensor data to determine the optimal turning direction: it 

turned left if more space was available on that side, otherwise, it turned right. The Q-learning algorithm 

continuously refined this decision-making process by learning from past experiences, thereby enhancing future 

navigation efficiency. This adaptability was crucial in enabling the robot to autonomously navigate the factory, 

adjusting to obstacles and new routes as they emerged. 

5. Discussion 

This section provides a comprehensive analysis of the findings presented in Section 4, comparing them with 

relevant literature and drawing theoretical insights from the analysis. The discussion is structured to align with 

the study’s main objectives, contrasting the results with previous research and highlighting the theoretical 

contributions of the study. The goal is to connect the study outcomes to the theoretical framework and literature 

review, presenting a coherent narrative that underscores the significance and implications of the study. 

The evaluation of the Autonomous Mobile Robot (AMR) focused on motor functionality and sensor integration. 

The AMR demonstrated precise movements and effective obstacle detection and navigation, aligning with 

previous research that underscores the importance of accurate motor control and reliable sensor technology in 

autonomous navigation. The AMR successfully avoided 3 obstacles with an average distance of 12 cm from each 

obstacle during navigation. This performance demonstrates the robot's accuracy in maintaining a safe clearance 

while effectively navigating through the environment. 
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Compared to existing literature, this study highlights the advancements made in robot perception and decision-

making through enhanced sensor integration. The incorporation of traditional methods alongside the Q-learning 

reinforcement algorithm led to significant improvements in maneuverability and obstacle avoidance. The results 

indicate that the Q-learning model enhanced the robot’s adaptability and performance in dynamic environments, 

representing a notable advancement over conventional methods. The results indicate that the Q-learning model 

enhanced the robot’s adaptability and performance in dynamic environments, representing a notable advancement 

over conventional methods. The effectiveness of Q-learning in AMR navigation is contextualized by comparing 

these results with existing research on traditional and advanced obstacle avoidance techniques. 

Moreover, the successful application of Q-learning in a small Sri Lankan manufacturing plant illustrates the 

potential of deploying sophisticated machine-learning algorithms in practical industrial settings. This study 

addresses specific operational challenges faced by small manufacturing facilities, offering a viable solution that 

bridges theoretical concepts with real-world implementation. 

However, due to time constraints, reinforcement learning experiments were predominantly conducted in a virtual 

environment, with the top-performing algorithm subsequently tested in a real-world AMR. Ideally, reinforcement 

learning should be integrated directly into the physical robot to account for real-world variables and ensure optimal 

performance.  Future research should focus on implementing reinforcement learning on the actual AMR in its 

operational environment. This approach could enhance the robot’s ability to adapt to real-world complexities, 

potentially leading to further improvements in navigation and obstacle avoidance. 

6. Conclusion 

This section concludes the study by summarizing the main findings, examining their implications, and suggesting 

directions for future research and practical applications. It begins with a brief overview of the study's objectives, 

methodology, and key results, followed by an analysis of the study's contributions and limitations. 

The study aimed to develop a functional model of an autonomous mobile robot (AMR) for a small Sri Lankan 

factory, focusing on collision avoidance using reinforcement learning, specifically Q-learning. The results 

demonstrated that the AMR successfully navigated the test environment with both precision and efficiency, 

avoiding 3 obstacles with an average distance of 12 cm from each obstacle. This performance underscores the 

robot's accuracy in maintaining a safe clearance and effective obstacle avoidance, showcasing the advantages of 

Q-learning over traditional methods. The integration of sensors and motors significantly enhanced the robot's 

adaptability in dynamic settings, reinforcing and expanding on existing research in advanced navigation 

techniques. 

The practical implications of these findings are substantial for small manufacturing plants in Sri Lanka, offering 

a viable solution to improve operational efficiency. The study highlights the potential of advanced machine 

learning algorithms to address operational challenges and boost productivity in industrial environments. However, 

the study's controlled experimental conditions suggest that further validation is needed in more varied and 

complex manufacturing scenarios. 
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Future research should focus on extending the study to different manufacturing environments, incorporating 

additional sensors for more sophisticated obstacle detection, and refining reinforcement learning algorithms. 

Implementing the developed AMR system in multiple small factories would provide a broader evaluation of its 

effectiveness and adaptability in diverse real-world conditions. 

Overall, this study successfully demonstrates the benefits of reinforcement learning in enhancing AMR navigation 

and obstacle avoidance, particularly in small-scale industrial settings. It makes a significant contribution to the 

field of autonomous robotics by addressing the specific needs of small-scale manufacturing plants in Sri Lanka 

and sets the stage for future advancements and practical applications 
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