New Sequence Spaces with Respect to a Sequence of Modulus Functions
Abstract
In this paper, we introduce the notions of invariant convergence, invariant convergence with respect to a sequence of modulus functions and establish some basic theorems. Furthermore, we give some properties of Cauchy sequence and Cauchy sequence. We basically study some connections between invariant statistical convergence and invariant lacunary statistical convergence with respect to a sequence of modulus functions and between strongly invariant convergence and invariant lacunary statistical convergence with respect to a sequence of modulus functions. Also, we establish some inclusion relations between new concepts of statistically convergence and –invariant statistically convergence with respect to a sequence of modulus functions.
Keywords
Full Text:
PDFReferences
A. R. Freedman and J. J. Sember. “Densities and summability.” Pacific J. Math., vol. 95, pp. 1011, 1981.
A. Nabiev, S. Pehlivan and M. Gürdal. “On I Cauchy sequences.” Taiwanese J. Math., vol. 11(2), pp. 569576, 2007.
E. Kolk. “On strong boundedness and summability with respect to a sequence moduli.” Tartu Ül. Toimetised. vol. 960, pp. 4150, 1993.
E. Savaş and P. Das. “A generalized statistical convergence via ideals.” App. Math. Lett., vol. 24, pp. 826830, 2011.
E. Savaş. “Some sequence spaces involving invariant means.” Indian J. Math., vol. 31, pp. 18, 1989.
E. Savaş. “Strong 𝜎convergent sequences.” Bull. Calcutta Math., vol. 81, pp. 295300, 1989.
E. Savaş and F. Nuray. “On 𝜎 statistically convergence and lacunary 𝜎 statistically convergence.” Math. Slovaca. vol. 43(3), pp. 309315, 1993.
E. Savaş. “On generalized A difference strongly summable sequence spaces defined by ideal convergence on a real nnormed space.” J. Inequal. Appl. 2012.
F. Nuray and E. Savaş. “Invariant statistical convergence and A invariant statistical convergence.” Indian J. Pure Appl. Math., vol. 10, pp. 267274, 1994.
F. Nuray, H. Gök and U. Ulusu. “ I_σ –convergence.” Math. Commun., vol. 16, pp. 531538, 2011.
H. Nakano. “Concave modular.” J. Math. Soc. Jpn., vol. 5, pp. 2949, 1953.
H. Fast. “Sur la convergence statistique.” Colloq. Math., vol. 2, pp. 241244, 1951.
I. J. Schoenberg. “The integrability of certain functions and related summability methods.” Amer. Math. Monthly, vol. 66, pp. 361375, 1959.
I. J. Maddox. “Sequence spaces defined by a modulus.” Math. Proc. Cambridge Philos. Soc., vol. 100, pp. 161166, 1986.
J. A. Fridy. “On statistical convergence.” Analysis, vol. 5, pp. 301313, 1985.
J. A. Fridy and C. Orhan. “Lacunary statistical convergence.” Pacific Journal of Mathematics, vol. 160(1), pp. 4351, 1993.
J. S. Connor. “On strong matrix summability with respect to a modulus and statistical convergence.” Canad. Math. Bull., vol. 32, pp. 194198, 1989.
L. Leindler. “Uber die de la Vall´eePousnsche Summierbarkeit allge meiner orthogonalreihen.” Acta Math. Acad. Sci. Hungarica, vol. 16, pp. 375387, 1965.
M. Gürdal, U. Yamancı and S. Saltan. “A^Istatistical convergence with respect to a sequence of modulus functions.” Contemporary Analysis and Applied Mathematics, vol. 2 (1), pp.136145, 2014.
M. Mursaleen. “𝜆 Statistical Convergence.” Math. Slovaca, vol. 50 (1), pp. 111115, 2000.
M. Mursaleen. “Matrix transformation between some new sequence spaces.” Houston J. Math., vol. 9, pp. 505509, 1983.
M. Mursaleen. “On finite matrices and invariant means.” Indian J. Pure and Appl. Math., vol. 10, pp. 457460, 1979.
P. Das, E. Savas and S. Kr. Ghosal. “On generalizations of certain summability methods using ideals.” Appl. Math. Lett., vol. 24, pp. 15091514, 2011.
R. A. Raimi. “Invariant means and invariant matrix methods of summability.” Duke Math. J., vol. 30, pp. 8194, 1963.
P. Schaefer. “Infinite matrices and invariant means.” Proc. Amer. Math. Soc., vol. 36, pp. 104110, 1972.
P. Kostyrko, M. Macaj and T. Salat. “I –convergence.” Real Anal. Exchange, vol. 26 (2), pp. 669686, 2000.
S. Pehlivan and B. Fisher. “On some sequence spaces.” Indian J. Pure Appl. Math., vol. 25 (10), pp. 10671071, 1994.
T. Bilgin. “Lacunary strong Aconvergence with respect to a modulus.” Mathematica, vol. XLVI(4), pp. 3946, 2001.
T. Salàt. “On statistically convergent sequences of real numbers.” Math. Slovaca, vol. 30, pp. 139150, 1980.
U. Ulusu and F. Nuray. “Lacunary I_σ –convergence.” (Under review).
W. H. Ruckle. “FK spaces in which the sequence of coordinate vectors is bounded.” Canadian J. Math., vol. 25, pp. 973978, 1973.
Refbacks
 There are currently no refbacks.

Comments on this article
by Ray Ashcraft (20180316)