Close Genetic Relatedness of Chromis Fish (Abudefduf sp.) Between Indonesia and Korea Population

Jae Won Lee, Mustaruddin Mustaruddin, Bambang Murdiyanto, Ronny Irawan Wahju, Dan Kim Jin Koo

Abstract


The purpose of our study was to look closely relationship of Chromis fish taken from Korean waters and Indonesia based on Deoxyribose Nukleid Acid (DNA) mitochondrial marker. Samples of data taken from each of the 21 identified samples of the Abudefduf vaigiensis species, Abudefduf sexfasciatus and Abudefduf bengalensis. The samples taken were then extracted, amplified, and sequenced based on the mitochondrial DNA marker from the CYTB locus. The DNA sequence result is processed in MEGA 6.06 software to analyze the phylogenetic tree for determine close relatedness. The result showed there were 4 main clades including one clade outgrup explaining the chromis fish close relatedness i.e. 1) Abudefduf vaigiensis group, Abudefduf sexfasciatus and Abudefduf bengalensis, 2) Abudefduf Bengalensis group and 3) Abudefduf vaigiensis group from Buton waters location. The closest relatedness between Chromis fish found in Korea and Indonesia in the A. vaigiensis Korea and A. vaigiensis species in Sorong waters, ie, by the genetic distance of 0.0008. This genetic distance value in pairs of 10000 pairs of nucleotide have 8 pairs of different nucleotide.


Keywords


Genetic; Chromis fish; Abudefduf vaigiensis; Abudefduf sexfasciatus dan Abudefduf bengalensis; Korea; Indonesia.

Full Text:

PDF

References


A. Ferguson, Taggart, T.B.Prodohl, O. McMeel, C. Thompson, C. Stone,P. McGinnity, andR.A R.A.Hynes. The application of moleculer markers to study and conservation of fish population, with special reference to Salmo. J.of Fish Biology.vol. 47, pp. 103126. 1995

A.Nuryanto and M. Kochzius. Highly restricted gene flow and deep evolutionary lineages in the giant clam Tridacna maxima.Coral Reefs. Vol. 28, pp. 607-619. 2009.

B. Hariyadi, Harlita, Muswita, M. Aina, A. Sadikin. Training of using NCBI (National Center for Biotechnology Information) and MEGA 4.0 (Molecular Evolutionary Genetics Analysis Version 4.0) programme for biology research and learning improvement in school and university. Journal of Service for Community. Vol. 52, pp. 55-60. 2011.

C. Kemena, C. Notredame. Upcoming challengesfor multiple sequence alignment methods in the highthroughputera. Bioinformatics. Vol. 25, pp. 2455 2465. 2009

D. Graur and Hsiung Li. Fundamentals of Molecular Evolution. Sunder-land, MA, USA : Sinauer Associates, 2000.

D. Saleky, I. Setyobudiandi H.A. Toha,M. Takdir, H. Madduppa. Length-weight relationship and population genetic or two marine gastropods species(Turbinidae: Turbo sparverius and Turbo bruneus) in the Bird Seascape Papua,Indonesia. Biodiversitas. Vol. 17(1), pp. 208-217. 2016.

D.S. Pandin. Genetic Similarity of Mapanget, Tenga, Bali, Palu and Sawarna Tall Coconut Populations Based on RAPD (Random Amplified Polymorphic DNA). Thesis, Agricultural University, Indonesia, 2000

F. Schwagele. Traceability from a European perpective. Meat Science. Vol. 71(1), pp. 164-173.2005.

F. Teletchea, M. Celia, H. Catherine. Food and forensic molecular identification : update and challenges.Trends in Biotecnology. Vol. 23(7), pp. 359366. 2005

G. Litsios, L. Pellissier, F. Forest, C. Lexer, P.B. Pearman, P. N.E. Zimmermann, N. Salamin. Trophic Specialization Influences The Rate of Environmental Niche Evolution in Damselfishes (Pomacentridae),in Proceedings ofThe Royal Society B: Biological Sciences, pp. 3662-3669. 2012

H. Madduppa. Reef Fish Bioechology and Biosystematic. Bogor (ID): IPB Press. 2014

K. Soewardi. Pengolahan Keragaman Genetik Sumberdaya Perikanan dan Kelautan. Bogor (ID) : Institut Pertanian Bogor. 153 h. 2007.

K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar. (2011). Mega 5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood,Evolutionary Distance, and Maximum Parsimony Methods. MolecularBiological Evolution. [On-line]. Vol. 28(2). Available: doi:10.1093/molbev/msr121. [July.12, 2017]

Lehninger. Biochemical Basics, 3rd ed., M. Tenawijaya, translator. Jakarta (ID): Erlangga, 1982.

M. Jusuf. Genetic 1st : Gene Structure and Expression. Jakarta : CV. Sagung Seto, 2001.

M.K. Schwartz, G. Luikart, R.S. Waples. Genetic monitoring as a promising tools for conservation and management. Tren Eco Evo. Vol. 22, pp. 1. 2006.

M.N. Puterbaugh and J.G. Burleugh. Investigating Evolutionary Question Using Online Molecular Databases. American Biology Teacher. Vol. 63(6), pp. 422-431. 2001.

M. Nei. Genetic Distance Between Population. American Nature, Vol. 106, pp. 283-292, 1972

N. Saitou and M. Mei. The neighbor-joining method:A new method for constructing phylogenetic trees .Mol. Biol. Evol. Vol. 4, pp. 406 425. 1987

P.A. Martin and SR. Palumbi. 1993. Protein Evolution in Different Celluar Environments: Cytochorome B in Sharks and Mammals. Mor.Biol.Evol. Vol. 10(4), pp. 873-891. 1993

P.F. Cowman andD.R. Bellwood. Vicariance across major marine biogeographic barriers: temporal concordance and the relative intensity of hard versus soft barriers inProceedings of The Royal Society of London B: BiologicalSciences. 2013, pp. 280

Prehadi, A. Sembiring, E.M. Kurniasih, Rahmad, D. Arafat, B. Subhan, H. Madduppa. (2015). DNA barcodingand phylogenetic reconstruction of shark specieslanded in Muncar fisheries landing site in comparison with Southern Java fishing port. Biodiversitas. [On-line]. Vol. 16(1), pp. 55-61. Available: 10.13057/biodiv/d160107. [July. 12, 2017].

P.S. Walsh, D.A. Mezger, R. Higuchi. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotecniques. Vol. 10(4), pp. 506. 1991

P. Tardent. Capture d'un Abudefduf saxatilis vaigiensis Q. und G. (Pisces, Pomacentridae) dans le Golfe de Naples.Revue Suisse de Zoologie. Vol. 66, pp. 347-351. 1959

R. Frankham. 1996. Relationship of genetic variation to population size in wildlife. Con Biol. Vol. 6, pp. 1500-1508.

Rina.Genetic diversity of Pangasius in Indonesia base on DNA mitochondria analysis with PCR-RFLP technique. thesis. Bogor Agricultural University, Bogor. 2001.

R. Froese and D. Pauly.FishBase. Internet: http://www.fishbase.us, 2015 [July. 10, 2017].

T. Coenye and P. Vandamme. Extracting phylogenetic information from wholegenome sequencing projects: the lactic acid bacteria as a test case. Microbiology. Vol. 149, pp. 3507-3517, 2003.

T. Hooriike, D. Miyata, K. Hamada, S. Saruhashi, T. Shinozawa, S. Kumar, R. Chakraborty, T. Komiyama, Y. Tateno. Phylogenetic construction of 17 bacterial phyla by new method and carefully selected orthologs. Genetic. Vol. 429, pp. 59-64, 2009.

T.D. Kocher, W.K. Thomas, A. Meyer, S.V. Edwards, S. Paabo, F.X. Villablanca, A.C. Wilson. Dynamics of mitochondrial DNA evolution in animals: Ampli?cation and sequencing with conserved primers in Proc. Natl. Acad. Sci. 1989, pp. 61966200. 1989.

W. Meilindo. Genetic and Morphological Variation and Genetic Relationship of Sea Slugs (Phyllidiidae) between Papua and Australia Population. Undergraduate thesis, Bogor Agricultural University, Indonesia. 2014.

N.L.P.I. Dharmayanti. Moleculer Philogenetic: Organism taxonomy method base on evolution history. Wartazoa. Vol. 21, Ed. 1, pp. 1-10. 2011


Refbacks

  • There are currently no refbacks.


 
 
  
 

 

  


About IJSBAR | Privacy PolicyTerms & Conditions | Contact Us | DisclaimerFAQs 

IJSBAR is published by (GSSRR).