A Proposal for Robpca Algorithm


Principal component Analysis (PCA) is one of the most frequently used multivariate statistical methods. Especially, it is used on the purpose of dimension reduction and obtaining uncorrelated variables. However, classic PCA (CPCA) is sensitive to outlier. Because it is based on classic covariance or correlation matrices influenced by outliers. Therefore, CPCA can give fallacious results in data sets which have outliers. In this study, the robust PCA (RPCA) methods to solve this problem of CPCA are introduced in literature. Moreover, we bring forward a proposal to ROBPCA algorithm which is one of these methods.


ROBPCA; Robust Principal Component Analysis; Standardization; High Dimensional Data.

Full Text:



Alpar R. Applied Multivariate Statistical Methods. Ankara: Detay Publishing, 2011.

Bulut H., ner Y. The Evaluation of the Development Agency Regions in Turkey In Terms Of Some Socioeconomic Indicator with Factor Analyses. Alphanumeric Journal, 3.1:81-88, 2015.

Koch I. Analysis of Multivariate and High-Dimensional Data. New York: Cambridge University Press, 2014.

zdamar K. Statistical Data Analysis with Package Softwares-2. Eski?ehir: Nisan Publishing, 2013.

Rencher A. C. Methods of Multivariate Analysis. New York: John Wiley & Sons; 2003.

Tatl?dil H. Applied Multivarite Statistical Analysis. Ankara: Akademi Publishing, 1996.

Hubert M., Rousseeuw P. J., Branden K. V. ROBPCA: A New Approach to Robust Principal Component Analysis. Technometrics, 47: 64-79, 2005.

Filzmoser P. ,Todorov V. Review of robust multivariate statistical methods in high dimension. Analytica chimica acta, 705.1: 2-14, 2011.

Rousseeuw P. J. Multivariate Estimation with High Breakdown Point. Mathematical Statistics and Applications, 283-297,1985.

Rousseeuw P. J., van Driessen K. A Fast Algorithm for the Minimum Covariance Determinant Estimator. Technometrics, 41: 212-223, 1999.

Friedman, J. H., Tukey, J. W. A projection pursuit algorithm for exploratory data analysis. 881-889, 1979.

Huber P. J.Projection Pursuit. The Annals of Statistics, 13: 435-475, 1985.

Li G.Y., Cheng P. Some Recent Developments in projection pursuit in China. Statistica Sinica, 35-51, 1993.

Croux C., Grazen R. High Breakdown Estimators for Principal Components: The Projection-Pursuit Approach Revisited. Journal of Multivariate Analysis, 95.1:206-226, 2005.

Filzmoser P., Serneels S., Croux C. et al. Robust multivariate methods: The projection pursuit approach.Berlin: Springer Berlin Heidelberg, 270-277, 2006.

Moller S. F., Frese J. V., Bro R., Robust methods for multivariate data analysis. Journal of Cheomemetrics,19: 549-563,2006.

Hubert, M., Rousseeuw, P., Verdonck, T. Robust PCA for skewed data and its outlier map. Computational Statistics & Data Analysis, 53(6): 2264-2274, 2009.

Erba? S. O. Probability and Statistics. Ankara: Gazi Publishing, 2008.

Maronna R. A., Martin R. D., Yohai, V. J. Robust statistics. Chichester: John Wiley & Sons, 2006.


  • There are currently no refbacks.





About IJSBAR | Privacy PolicyTerms & Conditions | Contact Us | DisclaimerFAQs 

IJSBAR is published by (GSSRR).