Evaluation of the Overall Potential Toxicity of Shallow Marine Sediment from Oran Bay by Means of Bioassays of Acute Toxicity

Aouicha Haddou, saliha dermeche, Wardia Hammouche, Toufik Boukhatem, Zitouni Boutiba

Abstract


This study investigates the ecotoxicological evaluation of sediment contamination from west Algerian Mediterranean coast (Oran harbour-Ain Franin).The toxicity of sediment and interstitials waters was estimated using bioessays of acute toxicity with brine shrimp Arthia salina. The bioessays reponses vary as a function of matrix and study area. The highest contamined samples (Oran harbour) are more toxic than the less contaminated samples (Ain Franin). The bioessay using interstitials waters was more sensible than those using contact sediment. The purpose of this study is to demonstrate the interest of ecotoxicological approach for assessing the quality of the coastal marine environment. The proposed approach is global, non-specific and gives elements to compares the sites between them in terms of quality of sediments and provide elements for classifying areas.


Keywords



Full Text:

PDF

References


Hollert, H., Drr, M., Erdinger, L., Braunbeck, T., 2000. Cytotoxicity of settling particulate matter and sediments of the Neckar River (Germany) during a winter flood. Environ. Toxicol. Chem. 19 (3), 528534.

Winkels, H.J., Kroonenberg, S.B., Lychagin, M.Y., Marin, G., Rusakov, G.V., Kasimov, N.S., 1998. Geochronology of priority pollutants in sedimentation zones of the Volga and Danube delta in comparison with the Rhine delta. Appl. Geochem. 13 (5), 581591 (Jul).

Zoppini, A., Ademollo, N., Amalfitano, S., Casella, P., Patrolecco, L., Polesello, S., 2014. Organic priority substances and microbial processes in river sediments subject to contrasting hydrological conditions. Sci. Total Environ. 484, 7483 (Jun 15).

Davoren, M., N Shilleabhin, S., Hartl, M.G.J., Sheehan, D., O'Brien, N.M., O'Halloran, J., et al., 2005. Assessing the potential of fish cell lines as tools for the cytotoxicity testing of estuarine sediment aqueous elutriates. Toxicol. In Vitro 19 (3), 421431.

De Castro-Catal, N., Kuzmanovic , M., Roig, N., Sierra , J., Ginebreda , A., Barcel, D., Prez, S., Petrovic, M., Pic , Y., Schuhmacher , M ., Muoz, I., 2016. Ecotoxicity of sediments in rivers: Invertebrate community, toxicity bioassays and the toxic unit approach as complementary assessment tools. Science of the Total Environment 540 297306.

Fleeger, JW., Carman, KR., Nisbet, RM., 2003. Indirect effects of contaminants in aquatic ecosystems. Sci Total Environ ;317:20733.

Chapman, P.M. , Long, E.R,.1983.The use of bioessays as a part of a comprehensive approach to marine pollution assessment. Marine Pollution Bulletin, 14, 81-84.

Antunes, S.C., De Figueiredo, D.R ., Marques, S.M., Castro, B.B., Pereira, R., Gonalves., 2007. Science of the Total Environment 374 (2007) 252259

Ingersoll, CG., Ankley, GT., Benoit, DA., Brunson, EL., Burton, GA., Dwyer ,FJ., et al., .1995. Toxicity and bioaccumulation of sediment-associated contaminants using freshwater invertebrates: a review of methods and applications. Environ Toxicol Chem;14:188594.

ISO, Water quality., 1996. Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) acute toxicity test. ISO International Standard 6341. Geneva, Switzerland: International Organization for Standardization.

ASTM, 1997. Standard guide for Daphnia magna life-cycle toxicity tests., Report E1193-97. Philadelphia, USA: American Society for Testing and Materilas.

ASTM, 2000. Test method for measuring the toxicity of sediment associated contaminants with freshwater invertebrates. Annual Book of American Society for Testing and Materials Standards. Philadelphia, USA: ASTM. E 1706-00.

Nebeker, AV., Cairns, MA., Gakstatter, JH., Malueg, KW., Schuytema, GS., Krawczyk, DF., 1984. Biological methods for determining toxicity of contaminated freshwater sediments to invertebrates. Environ Toxicol Chem 1984;3:61730.

OECD, (Organisation for Economic Cooperation and Development)., 1984. Algal growth inhibition test. OECD Guidelines for Testing of Chemicals, vol. 201. Paris: OECD.

OECD, Daphnia sp., 2000a. Acute immobilisation test. Revised Proposal for Updating Guideline, vol. 202. Paris, France: Organization for the Economic Cooperation and Development.

OECD., 2000b. Sediment-water chironomid toxicity test using spiked water draft document. OECD Guidelines for the Testing of ChemicalsProposal for a New Guideline;vol. 219.

Taylor, EJ., Maund, SJ., Pascoe, D., 1991. Evaluation of a chronic toxicity test using growth of the insect Chironomus riparius Meigen. In: Jeffrey DW, Madden B, editors. Bioindicators and Environmental Management. London, UK: Academic Press; p. 34352.

Environment Canada, 1992. Biological test method: growth inhibition test using the freshwater alga Selenastrum capricornutum. Report EPS 1/RM/25. Ottawa, ON, Canada: Environment Canada.

USEPA, 1994. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. EPA 600/ 7-91-002. US Environmental Protection Agency:Washington, DC.

Baran, A.,Tarnawski, M., 2015. Assessment of heavy metals mobility and toxicity in contaminated sediments by sequential extraction and a battery of bioassays.Ecotoxicology DOI 10.1007/s10646-015-1499-4.

Vanhaecke, P., Persoone, G., 1981. Report on an intercalibration exercise on a short-term standard toxicity test with Artemia nauplii (ARCtest). Inserm;106:359-76.

Carr, R.S., et D.C. Chapman. 1992. Comparison of solid-phase and pore-water approaches for assessing the quality of estuarine sediments. Chem. Ecol. 7: 19-30.

. Winger, P.V., et P.J. Lasier. 1991. A vacuum-operated pore-water extractor for estuarine

and freshwater sediments. Arch. Environ. Contam. Toxicol. 21: 321-324.

Carr, R.S., E.R. Long, H.L. Winsdom, D.C. Chapman, G. Thurby, G.M. Sloane, et D.A.

Wolfe. 1996. Sediment quality assessment studies of Tampa Bay. Environ. Toxicol. Chem. 15: 1218-1231.

Hooten, R.L., et R.S. Carr. 1998. Development and application of a marine sediment pore-water toxicity test using Ulva fasciata zoospores. Environ. Toxicol. Chem. 17: 932-940.141.

Wells, P.G., K. Lee, et C. Blaise. 1998. Microscale Testing in aquatic Toxicology: Advances, techniques, and Practice. CRC Press, Boca Raton, FL. 679 p.

DeWitt, T.H., G.R. Ditsworth, et R.C. Swartz. 1988. Effects of natural sediment features on survival of the phoxoxephalid amphipod Rhepoxynius abronius. Mar.Environ. Res. 25: 99-124.

Ankley, G.T., N.A. Thomas, D.M. Di Toro, D.J. Hansen, J.D. Mahony, W.J. Berry, R.C.Swartz, R.A. Hoke, A.W. Garrison, H.E. Allen, et C. S. Zarba. 1994. Assessing potential bioavailability of metals in sediments: A proposed approach. Environ. Manag. 18: 331-337.

Suedel, B.C. et J.H. Rodgers, Jr. 1994. Development of formulated reference sediments for freshwater and estuarine sediment testing. Environ. Toxicol. Chem. 13:1163-1175.

Bombardier, M., 2007. Dveloppement doutils cotoxicologiques pour lvaluation de sdiments. Thse

UFR Sciences Fondamentales et Appliques. Spcialit : Toxicologie de lEnvironnement. Universi de Metz.153p.

Di Toro, DM., Zarba, CS., Hansen, DJ., Berry, WJ., Swartz, RC., Cowan, CE., Pavlou, SP., Allen, HE., Thomas, NA., Paquin, PR., 1991. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10:1541- 1583.

Ankley, G.T., Mattson, V.R., Leonard, E.N.,West, C.W., Bennet, J.L.,1993.Predicting the acute toxicity of Cu in freshwater sediments.Evaluation of the role of acid volatile sulfide.Environmental Toxicity and Chemistry 12,pp.315-320.

Peterson, G.S., Ankley, G.T., Leonard, E.N., 1996. Effect of bioturbation on metal sulfide oxidation in surficial freshwater sediments. Environmental Toxicology and Chemistry, vol. 15, n12, pp. 2147-2155.

Burton, Jr,. A., Ingersoll, C.G., Burnett, L.C., Henry, M., Hinman, M. L., Klaine, S.J., Landrum, P. F., Ross, P., Tuchman, M., 1996. A comparison of sediment toxicity test methods at three Great lake areas of concern. Journal of Great Lakes Research, 22, 495-511.

Rodriguez, P., Reynoldson, T.B., 1999. Laboratory methods and criteria for sediment bioassessment. Manual of Bioassessment of Aquatic Sediments Qualitypp. 83133.

Ingersoll, C.G., Kunz, J.L., Hughes, J.P., Wang, N., Ireland, D.S., Mount, D.R., et al., 2015. Relative sensitivity of an amphipod Hyalella azteca, a midge Chironomus dilutus, and a unionid mussel Lampsilis siliquoidea to a toxic sediment. Environ. Toxicol. Chem. 34 (5), 11341144.

OECD, 1992. Report on the OECD Workshop on the Extrapolation of Laboratory Aquatic Toxicity Data to the Real Environment. Environment Monograph No. 59.

Vandegehuchte, M.B., Nguyen, L.T.H., De Laender, F., Muyssen, B.T.A., Janssen, C.R., 2013. Whole sediment toxicity tests for metal risk assessments: on the importance of equilibration and test design to increase ecological relevance. Environ. Toxicol. Chem. 32 (5), 10481059.

Bonnet, C., 2000. Dveloppement de bioessais sur sdiments et applications ltude, en laboratoire,de la toxicit de sdiments dulaquicoles contamins. Thse, Universit de Metz, France, 309 pp.

Cornelissen, G., Gustafsson, O., 2005. Prediction of large variation in biota to sediment accumulation factors due to concentration-dependent black carbon adsorption of planar hydrophobic organic compounds. Environ. Toxicol. Chem. 24 (3), 495498.


Refbacks

  • There are currently no refbacks.


 

 
  
 

 

  


About IJSBAR | Privacy PolicyTerms & Conditions | Contact Us | DisclaimerFAQs 

IJSBAR is published by (GSSRR).