Genetic Diversity within the 3UTR of the Cynomolgus Macaque (Macaca Fascicularis) LDLR Gene

Achmad Taher, Dedy Duryadi Solihin, Sulistiyani Sulistiyani, Dondin Sajuthi, Dewi Apri Astuti


The results showed that the 3UTR sequence of LDLR gene had lower genetic diversity (nucleotide composition, number of nucleotide difference, nucleotide diversity, genetic distance, substitution pattern) than human. There are 4 polymorphic sites distributed in 6 haplotypes. Four polymorphic sites were located on *42, *167, *210, and *290. Six identified haplotypes were haplotype I (GGAC), II (GGAT), III (GGGT), IV (AGGT), V (GGGC), and VI (GCGC) with haplotype diversity 0.745% 0.064%. Haplotype I V are parsimony haplotypes, while haplotype VI is singleton haplotype. The obtained polymorphism will become basic information to improve understanding and interpretation of data from hypercholesterolemial studies conducted in this species.

The low-density lipoprotein receptor gene (LDLR) in body is characterized by several single nucleotide polymorphisms (SNPs) that influence normal variations of plasma lipid profiles. The cynomolgus macaques (Macaca fascicularis) are widely used animals as models for investigating the response of plasma cholesterol to dietary cholesterol, but little is known about genetic variation in its LDLR gene. In this research, genetic diversity in the 3UTR of LDLR gene was studied using isolated DNAs of 22 cynomolgus macaques which have differences in responsiveness to atherogenic diets.


Full Text:



J.L. Goldstein, H.H Hobbs and M.S. Brown. Familial hypercholesterolemia. In The Metabolic and Molecular basis of inherited disease, 7th ed., vol. 3. C.R. Sciver, A.L. Beaudet, W.S. Sly and D. Valle, Ed. New York: McGraw-Hill, 1995, pp. 1215-1250.

A.M. Gotto Jr. Heart disease in the assessment and treatment of hypercholesterolemia: coronary artery disease and other atherosclerotic disease, family history, and left ventricular hypertrophy. Am J Med, vol. 96, pp. 9S-18S, Jun. 1994.

T.C. Sudhof, D.R. Van der Westhuyzen, J.L. Goldstein, M.S. Brown and D.W. Russell. Three direct repeats and a TATA-like sequence are required for regulated expression of the human low density lipoprotein receptor gene. J Biol Chem, vol. 262, pp. 10773-9, Aug. 1987.

G.M. Wilson, M.Z. Vasa and R.G. Deeley. Stabilization and cytoskeletal-association of LDL receptor mRNA are mediated by distinct domains in its 3' untranslated region. J Lipid Res, vol.39, pp. 1025-1032, Mei. 1998.

R.J.M. Taylor, M. Seed and S. Humphries. Four DNA polymorphisms in the LDL receptor gene: their genetic relationship and use in the study of variation at the LDL receptor locus. J Med Genet, vol. 25, pp. 653-9, Oct. 1988.

R. Poledne, Z. Pisa and K. Berg, K. Normal genetic variation at the low density lipoprotein receptor (LDLR) locus influences cholesterol levels in children. Clin Genet, vol. 43, pp. 122-6, Mar. 1993.

I.C. Klausen, P.S, Hansen, L.U. Gerdes, N. Rudiger, N. Gregersen and O. Faergeman. A PvuII polymorphism of the low density lipoprotein receptor gene is not associated with plasma concentrations of low density lipoproteins including LP(a). Hum Genet. Vol. 91, pp. 193-5, Mar. 1993.

Y.I. Ahn, M.I. Kamboh, C.E. Aston, R.E. Ferrell and R.F. Hamman. Role of common genetic polymorphisms in the LDL receptor gene in affecting plasma cholesterol levels in the general population. Arterioscler Thromb, vol. 14, pp. 663-70, May. 1994.

J. Pedersen And K. Berg. Normal DNA polymorphism at the low density lipoprotein receptor (LDLR) locus associated with serum cholesterol level. Clin Genet, vol. 34, pp. 306-12, Nov. 1988.

H. Schuster, S. Humphries, G. Rauh, C. Held, C. Keller, G. Wolfram And N. Zollner. Association of DNA-haplotypes in the human LDL-receptor gene with normal serum cholesterol levels. Clin Genet, vol.38, pp. 401-9, Dec. 1990.

T. Yamamoto, C.G. Davis, M.S. Brown, W.J. Schneider, M.L. Casey, J.L. Goldstain and D.W. Russel.The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell, vol. 39, pp.27-38, Nov. 1984.

D. Goto, T. Okimoto, M. Ono, H. Shimotsu, K. Abe, Y. Tsujita and M. Kuwano. Upregulation of low density lipoprotein receptor by genfibrozil, ahypolipidemic agent, in human hepatoma cells through stabilization of mRNA transcripts. Arterioscl Throm Vasc Biol, vol. 17, pp. 2707-2712, Nov. 1997.

G.M. Wilson, E.A. Roberts and R.G Deeley. Modulation of LDL receptor cell stability by phorbol esters in human liver cell culture models. J Lipid Res, vol. 38, pp. 437-446, Mar. 1997.

K. Tamura, D. Stecher, D. Peterson, A. Filipski, and S. Kumar. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol, vol. 30, pp. 2725-2729, Dec. 2013.

J. Rozas, S.D. Barrio, J.C. Messeguer and R. Rozas. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, vol.19, pp. 2496-2497, Dec. 2003.

J.T. Dunnen and E. Antonarakis. Nomenclatur for description of human sequence varians. Hum Genet, vol. 109, pp. 121-124, Jun. 2001.

S. Flynn, J. Satkoski, N. Lerche, S. Kanthaswamy and D.G. Smith. Genetic variation at the TNF-? promoter and malaria susceptibility in rhesus (Macaca mulatta) and long-tailed (Macaca fascicularis) macaques. Infection Genetic and Evolution, vol. 9, pp. 769-777, Sept. 2009.

B. Conne, A. Stutz and J.D. Vandli. The 3' untranslated region of messenger RNA: a molecular 'hotspot' for pathology. Nature Med, vol.6, pp. 637-641, Jun. 2000.

S.N. Chen, C.M. Ballantyne, A.M. Gotto Jr, Y Tan, J.T. Willerson and A.J. Marian. A common PCSK9 haplotype, encompassing the E670G coding single nucleotide polymorphism, is a novel genetic marker for plasma low-density lipoprotein cholesterol levels and severity of coronary atherosclerosis. J Am Coll Cardiol, vol. 45, pp. 1611-9, May. 2005.

G.M. Wilson, M.Z. Vasa and R.G. Deeley. Stabilization and cytoskeletal-association of LDL receptor mRNA are mediated by distinct domains in its 3' untranslated region. J Lipid Res, vol. 39, pp. 1025-1032, Mei. 1998.

C. Knouff, S. Malloy, J. Wilder, M.K. Altenburg and N. Maeda. Doubling expression of the low density lipoprotein receptor by truncation of the 3'-untranslated region sequence ameliorates type iii hyperlipoproteinemia in mice expressing the human apoe2 isoform. J Biol Chem, vol. 276, pp. 3856-62, Feb. 2001.

M. Nei. Molecular evolutionary genetics. New York: Colombia University Press, 1987.

D.L. Hartl and A.G. Clark. Principles of population genetics, 2nd ed. Sunderland: Sinauer Associates Inc, 1989.

N.J.R. Fagundes, F.M. Salzano, M.A. Batzer, P.L. Deininger and S.L. Bonatto. World genetic variation at 3UTR region of the LDLR gene: possible influence of natural selection. Annals of Human Genetics, vol. 69, pp. 389-400, Jul. 2005.

M. Franceschini, H. Muallem, K.M. Rose, Boewinkle and N. Maeda. LDL receptor polymorphisms and risk coronary heart disease: the atherosclerosis risk in communities study. J Thromb Haemos., vol. 3, pp. 496-498, Mar. 2009.

L.M. Mangravite, Wong, M. Medina, J. Cui, S. Pressman, D.J. Smith, M.J. Rieder, X. Guo, D.A. Nickerson, J.I. Rotter and R.M. Krauss. Combined influence of LDLR and HMGCR sequence variation on lipid-lowering response to simvastatin. Arterioscler Thromb Vasc Biol, vol.30, pp. 1485-1492, Jul. 2010

G.L. Fawcett, M. Raveendran, D.R. Deiros, D. Chen, F. Yu, R.A. Harris, Y. Ren, D.M. Muzny, J.G. Reid, D.A. Wheeler, K.C. Worley, S.E. Shelton, N.H. Kalin, A. Milosavljevic, R. Gibbs and J. Roger. Characterization of single-nucleotide variation in Indian-origin rhesus macaques (Macaca mulatta). BMC Genomics, vol.12, pp. 11, Jun. 2011.

N.G. de Groot, C.M.C. Heijmans, G. Koopman, E.J. Verschoor, W.M. Bogers and R.E. Bontrop. TRIM5 allelic polymorphism in macaque species/populations of different geographic origins: its impact on SIV vaccine studies. Tissue Antigen, vol. 78, pp. 256-262, Oct. 2011.

T. Haus, E. Akom, B. Agwanda, M. Hofreiter, C. Roos and D. Zinner. Mitochondrial diversity and distribution of African green monkeys (Chlorocebus Gray, 1870). Am J Primatol, vol.75, pp. 350360, Apr. 2013.

M. Ebeling, E. Kung, A. See, C. Broger, G. Steiner, M. Berrera, T. Heckel, L. Iniguez, T. Albert, R. Schmucki, H. Biller, T. Singer and U. Certa. Genome-based analysis of the nonhuman primate Macaca fascicularis as a model for drug safety assessment. Genome Res, vol. 21, pp. 1746-1756, Oct. 2011.

J. Rogers, M. Raveendran, G.L. Fawcett, A.S. Fox, S.E. Shelton, J.A. Oler, J. Cheverud, D.M. Muzny, R.A. Gibbs, R.J. Davidson and N.H. Kalin. CRHR1 genotypes, neural circuits and the diathesis for anxiety and depression. Mol Psychiatry, vol. 18, pp. 700-707, Jun. 2013.

S. Grote-Wessels, W. Frings, C.A. Smith and G.F. Weinbauer. Immunotoxicity testing in nonhuman primates. Methods Mol Biol, vol.598, pp. 341-359, 2010.

R. Yeager, D. Zhao, Y. Lan, D. Poage, C.T. Lin and M.D. Duvall. Use of mixed-effect models and tolerance limits to evaluate control cynomolgus monkey body weight change and variability during preclinical toxicology studies. Regul Toxicol Pharmacol, vol. 60, pp. 40-45, Jun. 2011.

Y. Vugmeyster, S. Allen, P. Szklut, A. Bree, et al. Correlation of pharmacodynamic activity, pharmacokinetics, and anti-product antibody responses to anti-IL-21R antibody therapeutics following IV administration to cynomolgus monkeys. J Transl Med, vol. 8, pp. 41, Apr. 2010.


  • There are currently no refbacks.





About IJSBAR | Privacy PolicyTerms & Conditions | Contact Us | DisclaimerFAQs 

IJSBAR is published by (GSSRR).